
Syntalos: A software for precise synchronization of

simultaneous multi-modal data acquisition and closed-loop

interventions

Supplementary Information

Matthias Klumpp1, Lee Embray1, Filippo Heimburg1, Ana Luiza Alves Dias2, Justus Simon1,

Alexander Groh1,3, Andreas Draguhn1,3, Martin Both1,3*

1Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120

Heidelberg, Germany

2Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078‑900, Brazil

3Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg,

Germany

69120 Heidelberg, Germany

* Correspondence: mboth@physiologie.uni-heidelberg.de

Additional Methods

Hardware

Various hardware components were used for evaluation of the program’s functions:

PC Systems:

▪ HP DV7-7147SG laptop with an Intel i5-3210M and 8 GB of memory

▪ Lenovo E495 laptop

▪ PC with an AMD Ryzen 5 5600G CPU and 16.0 GB of RAM

▪ PC with an AMD Ryzen 5 2600 CPU, 32 GB RAM, AMD Radeon RX 560

▪ PC with an AMD Ryzen 5 7600 CPU, 16 GB RAM, AMD Radeon RX 5500 XT

Data Acquisition Hardware:

▪ Intan Technologies RHD USB Interface Board with an RHD 64-Channel Recording headstage

(Intan Technologies, Los Angeles, California)

▪ The Imaging Source Cameras: DFK 37BUX462 and DFK 37BUX290 (The Imaging Source LLC,

Charlotte, United States)

▪ Basler ace Classic acA1920-25um camera (Basler AG, Ahrensburg, Germany)

▪ UVC Webcam, AnkePower Computer Webcam V-24 1080p (generic camera, Amazon online

shop)

▪ UCLA Miniscope v4 (Los Angeles, California)

▪ Arduino Uno R3 (Conrad Electronic, Hirschau, Germany)

▪ GALDUR board, custom device, hardware design available at https://github.com/bothlab/galdur

Reference hardware:

▪ Cambridge Electronic Design Ltd. Micro1401-3 (Signal generator, CED, Milton, United

Kingdom)

▪ Raspberry Pi Pico (Conrad Electronic, Hirschau, Germany)

▪ Kingbright DE4SGD LED (Conrad Electronic, Hirschau, Germany)

▪ ME/W-SG signal generator (Multichannel Systems, Germany)

Some of the data are generated by using the CED as a signal generator. However, most of

it has been generated using a signal generator based on a Raspberry Pi Pico. This device

can be used to test time synchronization easily and without any expensive equipment and

to verify Syntalos’ performance in new environments, and to calibrate it if necessary. We

provide code and instructions to build this device for total costs below 10 € at

https://syntalos.org/docs/timesync-verification/

https://github.com/bothlab/galdur
https://syntalos.org/docs/timesync-verification/

Devices for behavioral experiments:

▪ Gates/feeder/etc as created by Lee Embray and printed with FormLabs Resin Printer (FormLabs

GmbH, Berlin, Germany)

See https://github.com/bothlab/maze-hardware for building instructions.

Data Storage & Formats

Syntalos uses a new, universal layout (EDL; ‘Experiment Directory Layout’, Fig. S2) for

storage of different types of data together with their metadata (for details, see

https://edl.readthedocs.io). EDL forms a hierarchical directory structure, where specific data

are stored using suitable formats for each data type, e.g. Intan’s own RHD file format for

electrophysiology data, or various containers/codecs for video data. Permissible data formats

are restricted to a small set of open-source formats to standardize and simplify the subsequent

analysis. The EDL directory structure follows the broad logical structure of data stored in HDF5

(Hierarchical Data Format 5) files, but is a directory structure rather than a single-file format.

It is similar to prior solutions like the Exdir format 1, but has been specifically designed for raw

data acquired with Syntalos, which allows to use a wider variety of formats for storage of

different datasets.

A single experimental recording is stored in a directory automatically named by Syntalos and

is called a “collection” in EDL’s terminology. Each collection can have “groups” and “datasets”

as child directories. A “dataset” represents a leaf of the directory tree, containing actual data

and metadata, while a “group” organizes datasets and other groups into a logical, nested

structure. Any EDL organizational type is referred to as a “unit” (Fig. S2A). Syntalos will

automatically sort recorded datasets into groups and name both items according to its default

rules, using the names of the data-generating modules as base. However, experimenters can

change the naming as they like. Data may be unprocessed raw data or may be generated by an

analysis module, e.g. positional information from a behavioral experiment (see example in Fig.

S2B). Metadata are automatically generated by Syntalos, depending on the recording module,

and stored in a well-defined structure as specified for the EDL format. An EDL “collection”

(equivalent to a single experiment run) is assigned a unique ID that is also written into

individual recorded data files. This allows attributing data files to a specific experiment, even

if they were taken out of the EDL directory structure. For offline analysis, we created a Python

module named ‘edlio’ (https://pypi.org/project/edlio/) that supports reading Syntalos-recorded

data from an EDL collection and can create new EDL units for analysis results.

For timing information, Syntalos uses tsync files. This Syntalos-specific file format stores two

time series, one of the master clock and one of a secondary clock (the clock of the synchronized

device) in a binary format together with metadata. These include the EDL UUID (universal

unique identifier), time unit (e.g., milliseconds), and integer data types for the individual time

values. A tsync file can exist in two modes: ‘Continuous’ and ‘SyncPoints’. In ‘Continuous’

mode, each time point of the first clock is matched exactly with one time point of the second

clock with no gaps (e.g. matching a timestamp of the Master clock with a video frame number).

In ‘SyncPoints’ mode, only some timestamps are mapped to the secondary clock, while the

https://github.com/bothlab/maze-hardware
https://edl.readthedocs.io/
https://pypi.org/project/edlio/

missing timestamps need to be approximated, e.g. by linear interpolation, in post-processing

(e.g. master clock time of a sample to device clock time of a sample). This mode is most suitable

for very high frequency data sources, while the continuous mode is best for data sources with

low to medium sampling rate.

The individual timestamp data is chunked into blocks of a sampling-rate dependent size. Each

block is hashed using the XXH3 fast non-cryptographic hash algorithm (Collet), with the hash

stored after each block with a terminator sequence. This simplifies data recovery in case the

binary file gets corrupted (e.g. in transmission or by broken hardware), as the exact ‘bad’ block

can be pinpointed and ignored. In this case, only one block is lost instead of having an entirely

broken file. The risk of silent data corruption is also reduced. Therefore, tsync binary files can

be as robust as CSV files while being much faster to write and read. The ‘edlio’ Python module

contains a built-in reader for tsync files that handles them transparently, but Syntalos also

provides a small tool to convert them into a textual CSV-like representation if needed.

Comparison of the EDL data storage layout to other data formats

HDF5: The Hierarchical Data Format (HDF) is a file format to store large amounts of data in a

single, structured file. Currently, HDF5 is the most widely used container format for a variety

of other file formats, and is especially useful to store array data. While HDF5 is an excellent

format to store structured data, and has the advantage of being just one file instead of a directory

structure like EDL, it also has some disadvantages which may make EDL preferable in some

applications:

• Writing in parallel to multiple datasets in a HDF5 file is very slow due to thread

synchronization, limiting HDF5’s usability for massively parallel data acquisition.

• We observed that in case of an error while writing (e.g. due to a crash of the writing

process), the entire HDF5 file may be corrupted, instead of just one file. This may

happen in live recordings for a variety of reasons, in which case a lot of data is lost.

EDL, by comparison, is more robust towards errors and easier to recover.

• HDF5 has a limited set of ways to compress its array data. EDL, by using file-formats

designed for the recorded modalities, can compress the stored data more efficiently (e.g.

by using the FFV1 video codec for video data).

Advantages of HDF5 are the single file structure, its wide industry support and the availability

of a single library to load the entirety of an HDF5 file (while EDL relies on other tools to read

the specific data, e.g. FFmpeg or Neo).

Exdir: The Experimental Directory Structure (Exdir) is an open file format specification for

experimental pipelines. Like EDL, it is modeled using the same abstractions that HDF5 uses as

well.

Exdir and EDL share multiple similarities, but also have several key differences:

• EDL uses TOML for metadata and Exdir uses YAML. While YAML is great to write

for humans and sometimes less verbose than TOML, it has quite a lot of ambiguities

and pitfalls (see https://noyaml.com/) for humans and programs to run into, which

sometimes makes it more difficult to be used for structured data storage.

• Exdir adheres fairly strictly to the HDF5 abstract data model and the data types that

HDF5 supports. While arrays are well-supported as Numpy arrays, there are no

standards for "raw" datasets (containing videos or images). For use in a DAQ system

like Syntalos, the "raw" dataset type would have to be massively extended.

• Each Exdir dataset can only contain one format, while EDL supports "auxiliary data"

that describes the contained data further and is not pure textual TOML metadata. This

auxiliary data may, for example, be timestamps for a video file. In Exdir, this data would

have needed to be split into two datasets, which we did not want to do. EDL allows

strongly linked data to be kept together in one directory.

• Exdir has no unique ID for the dataset, and also does not mandate the ID to be added as

metadata to files contained in its structure. This is a feature that we wanted for EDL,

and that was difficult to retrofit into Exdir.

NWB: The “Neurodata Without Borders” (NWB) format is a HDF5-based file format and

structure to store neuroscientific data and make it easy to be interchanged between many groups

in the neuroscientific community. Being based on HDF5, NWB is not very suitable for

massively parallel direct-write data acquisition though, which is why Syntalos and most other

DAQ systems cannot use it directly.

However, EDL can be converted into NWB-HDF5 files after the data acquisition has been

completed, which is a good approach to get the best of both worlds.

System Requirements

Syntalos was tested extensively on x86-64 systems and requires a Linux-based operating system

with a kernel higher than or equal to version 4.20. We recommend at least 8 GB of memory and

a CPU that implements the AVX2 x86 instruction set extension. In general, any CPU supporting

the x86-64-v3 feature set (released in 2015) should be fine for Syntalos. The system with the

lowest specifications on which we tested Syntalos was a HP DV7-7147SG laptop (released

circa 2012) with an Intel i5-3210M (2 cores, 4 threads) CPU and 8 GB of memory. The system

with the highest specifications contained an AMD Ryzen 5 7600X (6 cores, 12 threads) CPU

and 16 GB of memory. The tested operating systems were Ubuntu 22.04, Ubuntu 24.04, Debian

12 and Debian 13 (development version). Syntalos can use a suitable GPU to offload video

encoding tasks, and some of Syntalos’ modules may even use OpenCL for acceleration. In

general though, a powerful GPU it is not required. In our experiments, we used an AMD Radeon

RX 560 and an AMD Radeon RX 5500 XT.

The precise system requirements for Syntalos depend strongly on the individual experimental

setup, e.g. how many cameras are in use and how much data processing has to happen online

and in parallel. Syntalos is particularly sensitive to CPU performance, disk I/O performance

and RAM clock speed (ordered according to relevance). Another important factor for optimal

data acquisition is the available interfaces. Many USB devices only have optimal bandwidth

and latency if connected to an individual USB controller. Syntalos provides a diagnostic tool to

https://noyaml.com/

help users find optimal USB ports for devices using the USB protocol. In summary, it is

important to have a good CPU, more than 8 GB of memory, a fast disk, and multiple USB

controllers. Syntalos is able to display extensive information about the system hardware via its

diagnostic panel.

Module development and expandability

To extend Syntalos with user-defined experiment-specific algorithms such as the logic of cue

presentations and gate openings in a behavioral task, some programming knowledge is required.

Most of such tasks can be accomplished using Python code. In certain cases like expanding

hardware support or implementing performance-critical modules C/C++ knowledge may be

advantageous. Several existing DAQ solutions such as Bonsai RX 2 make use of built-in

graphical programming interfaces. Such GUIs make it possible to customize data acquisition

without using a text-based programming language, especially for relatively simple designs.

However, basic Python programming abilities are widespread in the scientific community 3. We

therefore opted for Python programming which, in our experience, is superior for more complex

experimental designs. Furthermore, Syntalos imposes no limitation on the scripting languages,

provided a C++-based integration module is present for it. In the same way, it is possible to

implement a Syntalos module that leverages a graphical programming language such as the one

used by Bonsai RX.

Syntalos runs on Linux. This may hinder its adoption by users of other operating systems. It

allows, however, inspection of the whole data analysis pipeline in source code, precise analysis

of program performance, and easy integration with existing Linux-based Python code. We are

convinced that these advantages outweigh the potential drawback of being Linux-specific. It is

also well possible to port Syntalos to other operating systems which does, of course, require

some computation skills and careful performance validation.

Comparison to other software solutions

When comparing with proprietary solutions like ANY-Maze, EthoVision and LabVIEW,

Syntalos can not offer the dedicated hardware that these vendors offer for sale that is tuned to

their software, and also does not offer paid support. However, being open-source allows

engineers and scientists to extend the software on their own, or contract anyone to do so instead

of being dependent on a single vendor. Syntalos’ support for open-source hardware and

hardware from select vendors who offer open APIs is excellent, but so far Bonsai has a few

more modules for hardware integration available and a larger community behind it. All of the

tools have some method for custom programming, with Bonsai, LabVIEW, EthoVision and

ANY-Maze offering a graphical programming language, while Syntalos currently only has

Python, MicroPython and C++ scripting abilities. Graphical programming could be added to

Syntalos as a module in future. Bonsai and Syntalos both offer good support for Python, with

Syntalos [due to using CPython (python.org) instead of IronPython (ironpython.net)] making it

a lot easier to run preexisting Python code as a module, while code for Bonsai may need

adjustments. Of all of the tools, Syntalos currently is the only one with consistent raw data

management built into its core, while the other tools allow a variety of formats and data export

methods (see Table S4). Syntalos is also the only tool providing fully automated, algorithmic

time synchronization. We compare Bonsai and its synchronization performance to Syntalos in

detail in the Results and Fig. S5.

With the exception of PyControl (https://pycontrol.readthedocs.io/en/latest/), AutoPiLot

(https://auto-pi-lot.com) and LabVIEW, none of the existing solutions run on Linux or have

been specifically developed to make use of its capabilities, though an effort to port Bonsai to

Linux exists.

Syntalos is well-equipped to integrate into the existing landscape of neuroscience data handling

tools. It provides a directory structure to save data together with metadata in an entirely

machine-readable format which enables easy translation of all raw data into commonly used

standards like NWB 4 or G-node 5. In addition, Syntalos stores all data in open-source file

formats that can be read with standard tools available to neuroscientists, such as Ephyviewer

for electrophysiology data 6, ImageJ/Fiji for images 7 or simple media players for video files.

The use of open-source formats avoids licensing costs, and the resulting data are readable by

every lab in the foreseeable future. The edlio Python module (https://edl.readthedocs.io/latest/)

facilitates integration of Syntalos-acquired data into existing Python-based analysis pipelines.

In summary, data acquired and stored with Syntalos are usable in a highly versatile way and

can be integrated into a broad variety of existing tools.

https://pycontrol.readthedocs.io/en/latest/
https://auto-pi-lot.com/
https://edl.readthedocs.io/latest/

A

B

1

2
3

4

5

6
7 8

9

10
11

Figure S1: Syntalos UI. A: A screenshot of the Syntalos main control window. The “Add Module” button
(1) allows the addition of a new module which is represented in the connection view (2) as a rectangular
box. A module has ports (3) which allow piping data out of a module or feeding it data. Input ports are on
the left side, while output ports are on the right side of the module rectangle. Modules can be connected by
the user via simply dragging a line from an output port to an input port (4). To assess the position of an
animal in an experiment, for example, the output port of the video camera module can be linked to the
video input port of a position detection module. Once a line exists, data from one module will automatically
flow to the other module. The direction is indicated by a small arrow on the connecting line itself. To export
data, a directory to store the recording needs to be selected (5), the tested subject can be given a name by
selecting one that was previously defined from a dropdown list or entering one manually (6). The
experiment can be given a user-defined name as well (7). During a run, Syntalos will display information
about the current run, like the save path, elapsed time and information about any issues on the right-hand
panel (8). Once an experiment is configured, a test run can be started (9) where no data will be permanently
saved, or a real recording can be launched (10). In addition to basic configuration, the experimenter can also
set additional project-specific settings via the “Project” button (11). B: Some open control and display
windows for the depicted modules. From left to right in the foreground: Canvas displaying a live video of
the animal, Controller for Miniscope recording parameters, Canvas displaying background-subtracted live
Miniscope recording, Intan RHX electrophysiology display & recording controller in the background.

Icons/logos reproduced with permission (see Acknowledgements).

A B
EDL Unit

A directory with metadata

Group
Can contain other groups

or datasets

Collec�on
Root hierarchy element, can
contain groups or datasets

Dataset
Contains raw or processed
data. Leaf of directory tree.

MyExperiment

Collec�on
manifest.toml

a�ributes.toml

videos

Group
manifest.toml

a�ributes.toml

behavior

Group
manifest.toml

a�ributes.toml

Camera 2

Dataset

manifest.toml

a�ributes.toml

video.mkv

Type: video

Camera 1

Dataset

manifest.toml

a�ributes.toml

video.mkv

Type: video

Ephys-Data

Dataset

manifest.toml

a�ributes.toml

data.rhd

Type: signals

Events

Dataset

manifest.toml

a�ributes.toml

table.csv

Type: table

analysis

Group
manifest.toml

a�ributes.toml

Sta�s�cs

Dataset

manifest.toml

a�ributes.toml

data.npz

Type: array

Figure S2: EDL data storage scheme. A: Organizational structure of EDL (Experiment Directory
Layout) elements. A basic EDL unit is a directory with metadata in the TOML format (manifest.toml,
optional: attributes.toml). An EDL group contains other groups or datasets. An EDL collection is the
root of a directory tree and represents one experiment run recorded by Syntalos – it sets the unique ID
of the experiment and contains metadata like the experimenter’s name and experiment duration. A
dataset is an EDL unit containing the actual recorded data with its metadata. It is a directory tree leaf
and may not contain more nested datasets or other EDL units. B: Concrete example of a recorded
experiment. Each node represents a directory with the given name (e.g. “videos”). Each directory
contains metadata in the mandatory “manifest.toml” files and optional “attributes.toml” files for user-
or module-defined metadata. A dataset name (= directory name) is derived from the Syntalos module
name which can be set arbitrarily by the user in Syntalos’ GUI. No two modules with the same name
are allowed to be created. The amount of data types datasets may contain is limited, so data parsing is
simplified. For some datatypes, specific rules are applied (e.g. number formatting rules in CSV files,
and semicolons being used for value separation) to increase consistency and ease data parsing. In this
example, data analysis has been performed for the dataset in an “analysis” EDL group and integrated
into the EDL structure. EDL exists for Syntalos to easily and quickly store data in parallel with all
metadata and auxiliary data (timesync info, timestamps, …) included. It can be used by experimenters
to store their analysis data as well, but this is not required. Experimenters may convert the EDL
structure into anything they want and generate analysis data in any format they want (e.g. NWB for
neuroscientific analysis data).

A

B

Firmata I/O

Video Recorder

Miniscope

Python Script

Run Command
Output control signals and receive input
via a Firmata serial device (e.g. an Arduino)

System Modules

Record video files (lossless, but compressed
by default via FFV1/MKV)

Record calcium images in awake, moving
animals via UCLA Miniscopes

Run arbitrary user-defined Python code
and interface with all other modules

Run an external program that can
not be embedded into Syntalos

Diagnos�cs, benchmarks and
debugging aid for developers

Table
Display table rows and save
them to a CSV file

Intan RHX
Record biopoten�als with Intan
electrophysiology systems

Plot Time Series
Display mul�ple float - or integer
vectors over �me while the
experiment is running

TIS
Various Cameras
Obtain video signals from cameras
of various vendors (industrial and
consumer hardware)

Audio Source
Play a variety of audio signals

Canvas
GPU accelerated display
of images & their �mestamps

Minimum System Requirements

DeepLabCut Live
Example Python module to track an
animal with DeepLabCut Live, if a
suitable GPU is available

Firmata User Control
Interac�ve visual controller for Firmata,
useful for tes�ng purposes

Video Transformer
Scale and crop frames

Linux compa�ble hardware
Modern Linux OS (Ubuntu 24.04+,

Debian 12+, Fedora 40+, ...)

8 GB of system memory

4 GB of disk space

x86-65-v2 (AVX2-capable) CPU,
4 cores

Op�mal System Requirements

16 GB of system memory

500 GB of disk space

8-core x86-65-v2 (AVX2-capable) CPU

GPU with VA-API accelerated VP9 and AV1
encoding

Mainboard with mul�ple high-quality USB controllers

MicroPython Workbench
Program microcontrollers using MicroPython
and interface them with Syntalos

C++ Workbench
Write & run C++ code for data
processing and interfacing with other
modules easily and safely

JSON Writer
Write incoming data into a
structured, Pandas-compa�ble
JSON file

Figure S3: Syntalos Module Overview and Hardware Requirements. A: A list of the most important
readily available Syntalos modules and their respective functions. New modules can be implemented
by the user in either C++ or Python. B: System requirements as well as hardware recommendations for
new data acquisition setups using Syntalos.

Icons/logos reproduced with permission (see Acknowledgments).

Intan
DAQ Board

Signal Generator Syntalos

Input
Pulse

Galdur Board

Multichannel Systems
Stim Out control

A

200 ms

2
0
0
µ

V

Input signal

Band-pass filtered (0.7-5 kHz)

detection threshold

Galdur stimulation output

in
ci

d
e
n
ce

 [
a
rb

.
u
n
its

]

0 0.5 1 1.5
time lag [ms]

2

B

C E

25 ms
2
0
0
 µ

V
stimulation time lag 2 ms

D

Figure S4: Fast closed-loop experiments with the dedicated Galdur board Hardware. A: Schematics of the
evaluation of closed-loop reaction time. A signal generator (ME/W-SG, Multichannel Systems) simulating
extracellular spikes of hippocampal pyramidal neurons is connected to the Intan DAQ board controlled by
Syntalos. The recorded signal is routed to an analog output and fed into the Galdur board which itself is
connected to a Raspberry Pi 4, where it is processed and a stimulus is generated under user-defined
conditions. B: For this experiment, stimulation is performed if an extracellular spike is detected. The
Raspberry Pi runs a C++ routine that digitally band-passes the signal (0.7-5 kHz) to filter out low
frequencies as well as high frequency noise. Then, a threshold is applied to the signal and a stimulation TTL
pulse is generated if the threshold is crossed. C and D: Close-up of B. E: Distribution of the latency between
a spike trough and the stimulus output. Note that this latency is mainly dependent on the signal length that
has to be evaluated by the digital filter. For lower frequencies or frequency contents (e.g. ripple oscillations,
~200 Hz, i.e. 5 ms per cycle), the latency will be longer. Icons/logos reproduced with permission (see
Acknowledgements).

A

B

d
e
te

ct
e
d
 t
im

e
 -

 e
xp

e
ct

e
d
 t
im

e
 [
m

s]

Recording time [s]

Recording time [s] Recording time [s]

C

d
e
te

ct
e
d
 t
im

e
 -

e
xp

e
ct

e
d
 t
im

e
 [
m

s]

1 2

Signal Generator

TIS Camera

Wire

Light

← Data (Frames, Signals, ...)

TIS Camera
UCLA Miniscope Arduino (Events/Python)

UVC WebcamIntan original
Basler Camera

700000 10000 20000 30000 40000 50000 60000
0

2000

4000

6000

8000

100 200 300 400

Basler Camera

Miniscope

Intan
DAQ Board

UVC
Webcam

100

0

Arduino

10000

1

2

200 9300

9200

9100

79000 79100 79200 79300

time lag [ms]

18.9 Hz 26.1 Hz 60.0 Hz29.4 Hz

0-40 40 -20 200 0-40 40 0-40 40 0-40 40

n.a.

D

time lag [ms]

0-40 40 -20 200 0-40 40 0-40 40 0-40 40

in
ci

d
e
n
ce

0 2 4 6 8
time lag [ms]

F

Intan
DAQ BoardSignal Generator

Arduino

O
u
tp

u
t

P
u
ls

e

Input
Pulse

Syntalos

E

18.9 Hz - 53 ms 30 Hz - 33 ms

0 20 40 60 80 100
time interval [ms]

in
ci

d
e
n
ce

 [
a
rb

.
u
n
its

]

0 20 40 60 80 100
time interval [ms]

in
ci

d
e
n
ce

 [
a
rb

.
u
n
its

]

in
ci

d
e
n
ce

 [
a
rb

.
u
n
its

]

Figure S5: Synchronization performance of Bonsai. A: Experimental setup similar to Figure 3. Due to
missing drivers, not all devices shown in Figure 3 could be compared. In this configuration, we used a
standard USB UVC (Universal Video Capture) webcam (intended sampling rate 30 Hz), two different
scientific cameras (Basler, intended sampling rate 26 Hz; The Imaging Source, intended sampling rate 60
Hz), a UCLA Miniscope (intended sampling rate 30 Hz), an Intan RHD2000 electrophysiology USB

interface board (sampling rate 20 kHz), and an Arduino Firmata I/O serial interface connected via USB. B:
Time deviation of the recorded timestamps from the expected time points. Note that the Intan device is
much faster than the other clocks which adds up to an error of more than 9000 ms after 22 hours of
recording. C: Close-up of an early time point (indicated by 1 in panel D) and a late time point (indicated by 2
in panel D) of the recording. D: Distributions of the timestamps of the various devices relative to the low-
pass filtered timestamps of the TIS camera (fastest device). Left panels are from the time window depicted
in the left panel of C, and right panels from the time window depicted in the right panel of C. The
timestamps of the devices stay mostly within their expected range i.e. within their frame rate limits, with
the exception of the UCLA Miniscope. Also, expected frame rates are within the range of their intended
sampling rates, again with the exception of the UCLA Miniscope. E: comparison of the inter-frame
intervals of the UCLA Miniscope recorded with Syntalos (left panel) and with Bonsai (right panel). F:
Distribution of the latency between a Bonsai-triggered output command and the TTL pulse generated by
the Arduino board (similar to Figure 5D). Icons/logos reproduced with permission (see
Acknowledgements).

Close Gate RCrossed light barrier
IR

No

Yes Crossed light barrier
OR

No

Yes
Trigger Reward R;

open Gate R

Close Gate L

Forced inward trial from left to middle

Gate L: open
Gate R: closed

Crossed light barrier
IM

No

Yes Crossed light barrier
OM

No

Yes
Trigger Reward M;

open Gate R

Forced outward trial from middle to right

A

IL IM IR

OL OM OR

Gate L Gate R

Light Barrier

Light Barrier

Reward L Reward M Reward R

B

C

Forced inward trial from right to middle

Forced outward trial from middle to left

Position at Reward L

Position at Reward M

Figure S6: M-maze logic and Syntalos module settings. A: Schematics of the detectors (light barriers) and
actuators (automated gates and automated food dispensers) of the M-maze. B: Logic of the behavioral
experiment for forced trials (during the familiarization phase), which is implemented in the Python
scripting language and controls an Arduino board running Firmata IO. C: Syntalos modules required for
this experiment and their connections. Icons/logos reproduced with permission (see Acknowledgements).

A

Figure S7: Application example. A: Schematics of a behavioral experiment where local field potentials
from various brain structures are simultaneously recorded with the respiration state assessed by a
plethysmograph. B: Modules used for this experiment. C: Respiration state (upper panel) and local field
potentials (four lower panels) recorded in the olfactory epithelium (OE), the medial prefrontal cortex
(mPFC), and the dorsal (dHPC) and ventral (vHPC) hippocampus. Icons/logos reproduced with

9
permission (see Acknowledgements). Panel A reproduced from with permission.

Video Camera Module
- Records video from a camera

Frames

Video Recorder Module
- Encodes videos frames to a file

1s

Pressure Sensor Module
- Records air pressure from a sensor

Raw signals

B

C

Intan Module
- Records biopotentials from an
amplifier headstage and saves them

Raw signals
OE

mPFC

dHPC

vHPC

2
0
0
 µ

V

Supplemental Tables

Table S1: Data types that can be transferred between modules.

Data Type Purpose

ControlCommand A command (Start, Stop, Pause, Step, …) that one module can send to

another to change its state.

TableRow A row of a (CSV) table as text

FirmataControl A Firmata API control command (such as registering a new digital pin,

or writing to one)

FirmataData Data returned by read operations on a device using the Firmata protocol.

IntSignalBlock A block of data consisting of a matrix of integers.

FloatSignalBlock A block of data consisting of a matrix of doubles.

Frame A single frame recorded by an imaging device in form of an OpenCV

matrix.

Table S2: Third-party software used for Syntalos core.

Name Version Comment & Purpose Reference

GCC 10.2 C/C++ compiler gcc.gnu.org

Qt (Core, GUI, Test,

OpenGL, SVG, D-Bus,

Concurrent)

5.15 GUI toolkit and basic functionality www.qt.io

xxhash 0.8.1 XXH3 hash for error-detecting codes cyan4973.github.io/xxHash

Eigen3 3.3.9 Linear algebra & matrix operations eigen.tuxfamily.org

toml++ 3.2.0 TOML format read & write support marzer.github.io/tomlplusplus/

OpenCV 4.5.1 Data types & basic operations for image

processing

opencv.org

readerwriterqueue ~ Embedded, modified. A fast lock-free queue moodycamel.com/blog/2013/a-

http://www.qt.io/

implementation for multithreading fast-lock-free-queue-for-c++.htm

Libusb 1.0.24 Direct USB support libusb.info

Iceoryx 2.0.6 Low-latency IPC iceoryx.io

Dear ImGui and ImPlot 1.90 Immediate-mode plotting github.com/ocornut/imgui &

github.com/epezent/implot

systemd 252.6 Hardware support, system state read/write (e.g.

for changing sleep states)

freedesktop.org/wiki/Software/syst

emd/

FFmpeg 5.1.3 Video encoding ffmpeg.org

GLib2 2.66.8 C utility functions, Event loop wiki.gnome.org/Projects/GLib

KArchive 5.78 TAR/ZIP read/write support invent.kde.org/frameworks/karchiv

e

KDBusAddons 5.78 D-Bus convenience functions invent.kde.org/frameworks/kdbusa

ddons

KConfigWidgets 5.78 UI preferences, color scheme support invent.kde.org/frameworks/kconfig

widgets

GStreamer 1.18 Media processing pipelines, audio generation gstreamer.freedesktop.org

Python 3.11 Simple high-level programming language www.python.org

pybind11 2.6.2 Interoperability between Python and C++ pybind11.readthedocs.io

Breeze Icons ~ Icon / color theme and design language used by

Syntalos

invent.kde.org/frameworks/breeze-

icons

Flatpak 1.14.4 Simple deployment of Syntalos to any Linux

OS

flatpak.org

Table S3: Third-party software used for additional hardware support.

Name Version Purpose Reference

PoMiDAQ 0.4.5 For UCLA Miniscope support, uses libminiscope github.com/bothlab/pomidaq

Spinnaker SDK ~ Proprietary component for FLIR camera support www.flir.de/products/spinnake

r-sdk/

tiscamera 1.1.0 Open source support for The Imaging Source

industrial cameras

github.com/TheImagingSource

/tiscamera

Intan RHX ~ Embedded Intan RHX software for control of Intan

devices

intantech.com

OpalKelly Front Panel ~ Proprietary FPGA interface library used by Intan

RHX module

opalkelly.com/products/frontpa

nel

QFirmata ~ Embedded, modified code originally from the

QFirmata project. Used for Firmata with serial

interfaces

github.com/callaa/qfirmata

Firmata for Arduino ~ Arduino firmware implementing the Firmata

protocol, needed on an Arduino for use with the

Firmata I/O module

github.com/firmata/arduino

Table S4: Comparison of Syntalos with existing DAQ tools.

Tool Syntalos

Open Source Yes, free

Synchronization

Method

Statistical algorithms for alignment to computer-clock, TTL pulses, hardware

Hardware Support Variety of industrial cameras, Arduino, Intan electrophysiology hardware, extension

possible via custom modules

Programming

Model

Programmable in Python (via CPython), more extension possible in C++. Any

programming language can be added as module, modules can be created in any language

that supports the C FFI (Foreign function interface).

Data

Standardization

Common open source data formats in an EDL directory layout.

Tool ANY-Maze

Open Source No, paid license

Synchronization

Method

Manual / TTL Pulses

Hardware Support Various cameras, custom ANY-Maze specific hardware and adapters available on their

website for purchase

Programming

Model

Graphical block-based programming, tightly integrated with the system.

Data

Standardization

XML and CSV export, also export to GraphPad, SPSS, dBase and SYLK support. No

default layout.

Comment Has extensive animal tracking, for which Syntalos needs DeepLabCut and which is less

well integrated in Syntalos. Also does a lot of data analysis and statistics which is out of

scope for Syntalos.

Tool Noldus EthoVision XT

Open Source No, paid license

Synchronization

Method

Unknown, likely manual/TTL-pulse based

Hardware Support Many cameras, including industrial ones, interfaces with its own custom hardware,

optogenetics, external hardware integration and external software control (if supported).

Programming

Model

Graph-based visual programming language.

Data

Standardization

Various video formats allowed, export to Excel.

Comment Has powerful animal tracking and integrated data analysis, similar to ANY-Maze.

Tool Bonsai RX

Open Source Yes, free

Synchronization

Method

Manual / TTL Pulses

Hardware Support Wide variety of modules for a lot of hardware available

Programming

Model

Graph-based visual programming language, Python via IronPython (.NET flavor).

Data

Standardization

Many file formats in a completely user-defined layout.

Comment Extremely well integrated with OpenEphys hardware, established Open Source

community.

Tool PyControl

Open Source Yes, free

Synchronization

Method

Sync pulses via Rsync / camera frame trigger

Hardware

Integration

Custom open source hardware for closed-loop interfacing & control

Programming

Model

Needs external tools for hardware support, focuses on actuator control

Data

Standardization

Custom format, Numpy data

Comment Syntalos could make use of PyControl directly via its Python support, allowing to get the

best out of both tools.

Tool AutoPiLot

Open Source Yes, free

Synchronization

Method

Manual, TTL pulses

Hardware

Integration

Purely Raspberry Pi based

Programming

Model

Python

Data

Standardization

Anything that Python can write with custom, user-written code.

Comment Very young project based on a swarm of Raspberry Pi, very different concept compared

to Syntalos.

Tool LabView

Open Source No, proprietary

Synchronization

Method

Manual, sophisticated methods available with the right hardware / if implemented in G

by the user (see https://www.ni.com/en/shop/labview/timing-and-synchronization-in-ni-

labview.html)

Hardware Support Variety of modules / device drivers available, National Instruments hardware is

particularly well supported

Programming

Model

Primarily graphical dataflow programming in G

https://www.ni.com/en/shop/labview/timing-and-synchronization-in-ni-labview.html
https://www.ni.com/en/shop/labview/timing-and-synchronization-in-ni-labview.html

Data

Standardization

Many file formats in a completely user-defined layout.

Comment Widely used if graphical programming is needed, but not open-source unlike Bonsai RX

Tool Simulink

Open Source No, proprietary

Synchronization

Method

None, primarily used for running simulations.

Hardware Support Support available as long as the hardware provides a MatLab interface

Programming

Model

Graphical block diagram, Matlab code

Data

Standardization

Many file formats in a completely user-defined layout.

Comment Primarily used for simulations and to build hardware, and less for device control. Matlab

skills are very helpful when using Simulink for data acquisition.

Tool OpenEphys GUI

Open Source Yes, free

Synchronization

Method

Manual, TTL pulses

Hardware

Integration

Only supports electrophysiology hardware and DSP processing elements, but includes a

bridge to Bonsai to be used in conjunction with Bonsai.

Programming

Model

Supports blocks that can be written in Python, or new blocks can be created in C++

Data

Standardization

None.

Comment Mostly focused on electrophysiological recordings, which it does very well. Can be

combined with Bonsai to achieve similar features Syntalos provides 8.

Table S5: Devices tested with Syntalos

Electrophysiology • Intan RHD2000 USB Interface

Board

Miniscopes • UCLA Miniscope v3

• UCLA Miniscope v4

The Imaging Source Cameras • DFK 37BUX462

• DFK 37BUX290

• DMK37BUX287

Basler Cameras • ace Classic acA1920-25um

Miscellaneous • Arduino Uno Rev3 SMD

• Raspberry Pi Pico v1

• Raspberry Pi 4b

Table S6: Tetrode positions for electrophysiological aperture-detection experiment (Fig. 1)

Tetrode A/P with respect

to Bregma [mm]

M/L [mm] D/V with respect

to dura [mm]

BC (barrel cortex) 1 -1.0 3.25 -0.4

BC 2 -1.3 3.3 -0.3

BC 3 -1.6 2.7 -0.85

BC 4 -1.3 2.6 -0.85

BC 5 -1.0 2.7 -0.85

Table S7: Electrode positions for electrophysiological experiment shown in Fig. S7.

Electrode A/P with respect

to Bregma [mm]

M/L [mm] D/V with respect

to dura [mm]

OE (olfactory epithelium) + 3 mm from the

nasal fissure

0.5 -1

mPFC (medial prefrontal cortex) 1.8 0.5 -2.2

dHPC (dorsal hippocampus) -2 1.6 -1.4

vHPC (ventral hippocampus) -3.1 3.3 -3.5

Supplementary References

1. Dragly, S.A. et al. Experimental directory structure (Exdir): An alternative to HDF5 without
introducing a new file format. Frontiers in Neuroinformatics 12, 1-13 (2018).

2. Lopes, G. et al. Bonsai: An event-based framework for processing and controlling data
streams. Frontiers in Neuroinformatics 9, 1-14 (2015).

3. Muller, E. et al. Python in neuroscience. Frontiers in Neuroinformatics 9 (2015).
4. Rübel, O. et al. The Neurodata Without Borders ecosystem for neurophysiological data

science. eLife 11, e78362 (2022).
5. Herz, A.V.M., Meier, R., Nawrot, M.P., Schiegel, W. & Zito, T. G-Node: An integrated tool-

sharing platform to support cellular and systems neurophysiology in the age of global
neuroinformatics. Neural Networks 21, 1070-1075 (2008).

6. Gill, J.P., Garcia, S., Ting, L.H., Wu, M. & Chiel, H.J. neurotic : Neuroscience Tool for
Interactive Characterization. eneuro 7, ENEURO.0085-0020.2020 (2020).

7. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature
Methods 9, 676-682 (2012).

8. Buccino, A.P. et al. Open source modules for tracking animal behavior and closed-loop
stimulation based on Open Ephys and Bonsai. J Neural Eng 15, 055002 (2018).

9. Tort, A.B., Hammer, M., Zhang, J., Brankačk, J. & Draguhn, A. Temporal relations between
cortical network oscillations and breathing frequency during REM sleep. Journal of
Neuroscience 41, 5229-5242 (2021).

	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 9
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9

