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Introduction

Neural dynamics are highly non-stationary and exhibit tran-
sient phenomena. Transient events can be observed at cellular 
and network levels of the nervous system, such as action poten-
tials or short-lasting oscillatory patterns in the extracellular 
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Abstract
Objective. Closed-loop experiments provide unique insights into brain dynamics and function. 
To facilitate a wide range of closed-loop experiments, we created an open-source software 
platform that enables high-performance real-time processing of streaming experimental data. 
Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and 
execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single 
thread and nodes communicate with each other through thread-safe buffers. The framework 
allows for easy implementation of new processing nodes and data types. Falcon was tested 
both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial 
acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-
loop TTL pulses were generated with a USB module for digital output. We characterized the 
round-trip latency of our Falcon-based closed-loop system, as well as the specific latency 
contribution of the software architecture, by testing processing graphs with up to 32 parallel 
pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection 
of population bursts recorded live from the hippocampus of a freely moving rat. Main results. 
On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, 
while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the 
software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 
4-core workstations. Falcon was used successfully to detect population bursts online with 
~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop 
neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control 
of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community 
for implementing a wide variety of closed-loop experiments, including those requiring use of 
complex data structures and real-time execution of computationally intensive algorithms, such 
as population neural decoding/encoding from large cell assemblies.
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field potential (e.g. hippocampal sharp-wave ripples [1]). 
Neither experiments adopting traditional open-loop stimulus-
response paradigms, nor internal-state analysis of spontaneous 
neural activity that only identifies their correlative aspects, can 
assess the computational role of transient neural events. In con-
trast, experiments adopting a closed-loop paradigm, in which 
the stimulus is conditional on the state of neural activity [2–4], 
can causally determine the contribution of transient events to 
neural computations [5–10]. Closed-loop approaches are also 
relevant in clinical settings, like neuroprosthetics [11], detec-
tion of seizure in epileptic patients [12] and adaptive deep 
brain stimulation protocols for Parkinson’s disease [13].

In its broader meaning, closed-loop neuroscience covers 
any interaction of the neural system with the outside world 
[14]. Thus, it also includes experiments in which the input is 
not of neural origin, e.g. a behavioral measurement (obtained 
with video-monitoring or specific sensors), or in which the 
output is not directed to nervous tissue but to the outer world, 
e.g. presentation of visual stimuli conditional on events 
in the LFP signal [15] or brain–computer interface (BCI)  
applications [16].

While the nature of the input and output can be diverse, 
all closed-loop systems need a real-time processing comp-
onent that timely detects the occurrence of transient events of 
interest [14] and responds within a specified time (‘deadline’) 
[17, 18]. Hardware solutions based on integrated circuits, 
field-programmable gate-arrays (FPGAs), digital signal pro-
cessors (DSPs) or other custom-built hardware [19] are well 
suited for real-time processing, as the computational time 
can be made deterministic and hard real-time requirements 
(in which a missed deadline is considered a system failure) 
can be met [18]. Nonetheless, the diversity of closed-loop 
experimental algorithms [4] and conditions (e.g. integration 
of video-monitoring with multi-channel electrophysiological 
recordings [5]) requires not only computational speed but also 
high flexibility. When flexibility is critical, software solu-
tions are more advantageous over purely hardware solutions, 
as new algorithms can be quickly changed by simply recom-
piling or running a new version of the code. Importantly, as a 
closed-loop experiment is intrinsically defined by its real-time 
algorithm, cross-laboratory sharing of such algorithm is much 
easier and facilitates experimental reproducibility. Moreover, 
maintenance and development are more tractable than with 
purely hardware solutions.

In software, hard real-time requirements can be met only by 
using a real-time operating system (OS). However, soft real-
time requirements, in which deadlines can be missed occasion-
ally [20], can be met on a standard OS and are sufficient for 
many applications. To achieve these requirements when run-
ning computationally intensive algorithms, software design 
patterns must harness parallelization. A software design pat-
tern that uses parallelization can rely on multi-threading, i.e. 
the ability of a CPU to handle multiple threads of execution 
[17], and leverage the presence of more than one physical core 
inside modern CPUs to improve throughput and latency [21].

To facilitate the implementation of customized closed-loop 
experiments with different computational loads, flexibility in 
the software design is central. Yet, most open-source software 

solutions have been developed around specific applications, 
like EEG-based BCIs [22–26] or cellular electrophysiology 
[27, 28], and cannot be easily extended outside the original 
scope. For instance, EEG- and ECoG-based BCI software 
platforms generally process signals acquired at low sam-
pling rate (<2 kHz) and process data in batches of hundreds 
of milliseconds. These platforms, however, do not focus on 
support for closed-loop experiments that require millisecond-
scale feedback given streaming data at higher sampling rate 
(>20 kHz). On the other hand, software solutions for cellular 
electrophysiology can process signals sampled at high rate 
with very low latencies (<10 µs), but offer little support for 
parallel processing of multi-channel signals (e.g. RTXI [28] 
has only a single real-time thread).

Following a different approach, the hardware-software plat-
forms NeuroRighter [29] and Open Ephys [30] are primarily 
designed for data acquisition, but also support closed-loop 
applications (dynamic clamp; real-time detection of behavior, 
neural oscillations or individual spikes). However, such plat-
forms still have important limitations in terms of flexibility 
as they are tailored to specific hardware, lack the ability of 
the user to have direct control over the CPU resources (thus 
potentially hampering performance) and limit the implemen-
tation of new processing elements to the use of only pre- 
determined data types.

To meet the needs of a highly versatile closed-loop soft-
ware, we designed Falcon, a highly flexible open-source soft-
ware platform for real-time analysis of streaming experimental 
data. Falcon is built as a client-server application and uses a 
graph-based definition for implementing processing graphs in 
which each node is mapped to a separate thread of execution 
(giving the user direct control over CPU resources). Falcon 
comes equipped with basic processing nodes (e.g. spike detec-
tion and digital filtering), basic data types (e.g. MultiChannel 
and Event data) and its design makes it easy to implement new 
processing nodes and data types for customized closed-loop 
experiments.

Here we give a description of the software architecture of 
Falcon and demonstrate its real-time processing capabilities 
by showing sub-millisecond round-trip latency in processing 
128 channels streaming data at 32 kHz. As an example of 
closed-loop neuroscience application, we also show how 
Falcon was used to detect in real-time population bursts from 
the hippocampus of a freely moving rat.

Methods

Software architecture

Falcon was conceptualized as a general-purpose soft real-time 
processing software that operates on incoming data streams 
and produces outputs that can be used in closed-loop experi-
ments (figure 1). Falcon is written in the object-oriented 
and compiled C++11 language and it runs on Linux-based 
computer systems. Its modular architecture facilitates main-
tenance and development of new features. The source code 
is made available under GPL3 license at http://bitbucket.org/
kloostermannerflab.
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By design, Falcon is dedicated to the processing of data 
streams and is separated from (graphical) user interfaces in a 
client-server architecture. Clients communicate with Falcon 
over network connections to control and monitor data pro-
cessing or visualize intermediate and final outputs. Clients can 
be written in any programming language with support for the 
ZeroMQ messaging library [31].

Internally, Falcon is composed of three interacting subsys-
tems (figure 1(a)): a commands subsystem that receives and 
parses external commands; a logging subsystem that relays 
internal status and error messages to the outside; a graph sub-
system that constructs and executes a flow graph for data pro-
cessing. The flow graph is composed of processing nodes and 
directed data links between the nodes (figure 1(b)). To take 
advantage of parallel and concurrent computing and give the 
user maximum control of CPU resources, each Falcon node is 
mapped to a logical thread of execution.

Processing nodes

The building blocks of a processing graph are nodes that per-
form an operation on one or more incoming data streams and 
produce one or more outgoing data streams (figure 1(c)). Data 
streams flow to/from processing nodes through input/output 
ports. Each port manages one or more streams (connected to 
separate slots on the port) that all share the same data type. 
A port either has a predefined number of slots, or it dynami-
cally expands the number of slots depending on how many 
data streams are connected to it. Processing nodes with no 
input ports act as data sources; for example, they read data 
from a network socket or a file. Nodes with no output ports 
act as data sinks; their processing may involve serialization 
to disk or network or simply logging the arrival of specific 

data of interest. Finally, nodes with at least one input and one 
output port act as filters or detectors. Whereas filters gener-
ally transform continuous input data streams into different 
data streams, detectors identify the occurrence of a transition 
in the neural/behavioral input stream(s) that is relevant for a 
closed-loop feedback.

Data streams consists of data packets that flow between 
nodes through concurrent ring buffers. The ring buffers are 
owned by the output slots and contain pre-allocated data 
packets. Importantly, the ring buffer guarantees thread-safety 
and prevents other synchronization errors (like dead-locks) 
inside the Falcon process. Multiple downstream input slots 
can connect to the same ring buffer to receive the same data 
stream (i.e. single producer, multiple consumer). A hierar-
chical type system is defined for data packets that facilitates 
the validation of connections between processor nodes based 
on data type. Currently, four data types and corresponding data 
objects have been defined: MultiChannelData (containing an 
array of N samples for C channels), EventData (containing 
an event string), SpikeData (containing spike times and peak 
amplitudes) and MUAData (containing the number spikes in 
a predefined time bin).

Processing nodes may also share state values with each 
other and with external clients. State values were implemented 
as atomic variables to prevent data races across threads. 
Access to shared state values is governed by read/write per-
missions. Shared states are equivalent to unbuffered data links 
and can be used for sharing slow-changing variables inside 
and outside the Falcon server.

We have implemented a small library of processing nodes 
that support basic processing of electrophysiology signals, like 
digital signal filtering (supporting FIR filters and IIR filters in 
biquad cascade), down-sampling, and detection of spikes or 

Figure 1. Overview of Falcon software. (a) Falcon is based on a client-server architecture. The Falcon server is composed of three main 
subsystems. The graph subsystem manages the construction and execution of a user-defined processing graph that analyzes incoming 
behavioral and neural data streams and provides closed-loop feedback. The commands subsystem listens for and acts on user commands 
originating from the keyboard or remote client. Finally, the logging subsystem logs all internal messages (information, debug, warnings, 
updates and errors) to a number of destinations, including screen, disk and network. (b) Example graph with a reader node that receives 
data over the network and produces two data streams. The two streams pass through filter nodes, the outputs of which are combined into an 
aggregator node. Finally, the aggregated data stream passes through a detector and the generated event is absorbed by a sink. The two filter 
nodes share a state value (red dots connected by dashed line). (c) A processing node retrieves data packets arriving on its input port(s) and 
publishes processed data packets on its output port(s). Each port handles data streams with identical data type through one or more slots. A 
processing node can also share state values with other nodes. State values may also be read and/or modified by external clients and/or by 
other nodes.
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bursts (figure 2). For each data type, we also implemented a set 
of test sources that generate a stream of the specific data type 
(e.g. EventSource streams user-defined EventData at a fixed 
rate).

Real-time processing pipelines that only require the avail-
able processing nodes can be easily configured without the 
need for recompilation of Falcon software. New processing 
nodes and data types can be added by those familiar with 
C++11 programming. This is made very straightforward by 

the design pattern utilized in Falcon: in fact, a new data or 
processor class can be written by simply deriving the existent 
parent class (IData or IProcessor) and overriding the virtual 
methods.

Processing graph

Falcon constructs and configures the processing graph 
according to a user-provided description of the processing 

Figure 2. Library of available Falcon processors. Processors can be functionally classified as data sources (with no input ports, they read 
input data from network or disk), data sinks (with no output ports, they consume incoming data by producing a digital output for closed-
loop feedback, serializing data to disk or network or logging information about the incoming data), filters (they transform a continuous data 
stream on the input into a different continuous data stream on the output) and detectors (they transform an incoming continuous data stream 
into an irregular stream of events of experimental interests, e.g. ‘population burst’). Not shown: Dummy Sink (for testing purposes).

J. Neural Eng. 14 (2017) 045004
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nodes and their interconnections written in human-readable 
YAML language (figure 3). In the graph definition, each pro-
cessing node is identified by a unique name and class and 
is further parameterized by a set of options and initial state 
values. The graph definition has a convenient and compact 
syntax to define connections between output and input data 
ports. For ports with a variable number of slots, new connec-
tions automatically create additional slots, unless a specific 
slot number is requested.

At any given time, the graph subsystem is in one of the fol-
lowing three states: ‘no graph’, ‘ready’ and ‘run’. Transitions 
between these states are triggered by user commands  
(figure 4).

Initially, the graph subsystem has no processing graph 
defined and is in the ‘no graph’ state. Following a request to 
build a new graph, the subsystem will parse the graph defini-
tion and construct the processing nodes. The nodes then have 
the opportunity to configure themselves and create their input 
and output ports. Next, Falcon routes the data streams between 
output and input ports after a check for data type compatibility 
and links shared state values. During a subsequent negotiation 
phase, the parameters of a data stream (e.g. stream rate) and 
the data packet type (e.g. number of channels and samples) are 
fixed. This phase is followed by the creation of ring buffers 
that hold the data packets that will be streamed between con-
nected nodes. After all nodes are constructed, configured and 
connected, each node is given the opportunity to do a one-time 
preparation (e.g. to load resources or allocate data structures). 
Destruction of a graph follows the reverse sequence, with first 
a per-node clean-up and a final destruction of connection and 
node objects.

Once a graph is built, a processing run can be initiated 
and terminated through start/stop commands. When a run 
is started, node threads are started and after a per-run pre-
processing step they wait for a go signal to enter their main 
processing loop. As soon as a run is terminated, node threads 
are signaled to break out their processing loop, perform post-
processing and exit. The pre- and post- processing steps allow 
the node to execute pre-computations that are independent of 
the input data stream.

Parallelism and concurrency

Splitting the computation across multiple connected nodes in 
a graph has the benefit of modularization and flexibility that 
enables simple construction of new processing pipelines from 
a basic set of nodes. This flexibility is further enhanced by 
the implementation of algorithmic building blocks (e.g. FIR 
filter, threshold-crossing detector) that form the basis of node 
computations.

The modularity provided by the nodes allows Falcon 
to leverage the power of multi-core processors by map-
ping each node in the graph to a separate thread of exe-
cution. Whereas multiple threads on a single core allow 
multiple tasks to run concurrently, threads executed across 
different cores run in parallel. Thus, on multi-core CPUs 
multi-threading helps to speed up data processing. This 
allows the system to not only keep up with the incoming 

Figure 3. Example of a configuration file defining a Falcon graph 
in YAML language. A graph definition has three sections that 
define the processing nodes, the connections among nodes and the 
state connections. The processors section (A) contains a map of 
processor node definitions, including the type of node (class) and 
configurable options. For example, the source node (B) is of class 
NlxReader: it implements a processor that reads neural data from 
a Neuralynx DigiLynx acquisition system. Its channelmap option 
determines how signal channels are mapped to the output streams 
of the node. Two output ports ‘tt1’ and ‘tt2’ are listed, with ‘tt1’ 
streaming data from channels 0, 1, 2 and 3. The filter nodes are of 
class MultiChannelFilter which implements a processor that applies 
a digital (FIR/IIR) filter to incoming multi-channel data streams. 
The filter coefficients are read from a file named ‘spike.filter’ (C). 
Note that here the file path is specified as a URI, in which repo:// 
has been configured to point to the local GIT repository (the loaded 
filter, in this case, is part of the open-source Falcon repository). In 
(D), two nodes of class SpikeDetector are created: in the options 
section, the user can set the threshold for spike detection, the buffer 
size and the use of inverted or non-inverted signals for detecting 
spikes. As for the filter nodes, two identical nodes are conveniently 
defined at once by appending a range of numbers between brackets. 
By virtue of their data type, individual data packets in streams know 
how to serialize their contents. A generic FileSerializer node (E) 
takes advantages of this capability and can be used to save data 
streams to disk. The connections section (F) contains a list of links 
between output and input ports, and their slots. Finally, the states 
section (G) contains a list of processing node states that should be 
linked (section is commented because there are no states that need 
to be linked in this particular graph).

J. Neural Eng. 14 (2017) 045004
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data stream, but also to reduce closed-loop response 
latencies to values compatible with the constraints of the  
experiment [21].

Depending on the available hardware (i.e. number of CPUs 
and cores) and the application, computations in Falcon can 
either be split across many nodes (and threads) or grouped 
within a single node. For example, a graph may contain a 
single node that filters multiple data streams concurrently (e.g. 
MultiChannelFilter in figure 2), or many such nodes that filter 
data streams in parallel.

The average time required for processing incoming data 
should always be less than the total available compute time 
(the inverse of the data stream rate). If this basic requirement 
is violated, either there will be a growing backlog of data 
leading to increased latencies and eventually a break-down or 
stalling of the system, or data items will be dropped. The ring 
buffers between processing nodes serve to decouple the nodes 
and reduce the impact of fluctuations in processing time and 
stream rate that could lead to backlogs or missed data items. 
In Falcon, ring buffer sizes are configurable and high-water 
level indicators help to pinpoint potential weak spots in the 
processing graph.

Shuttling data packets between two connected processing 
nodes through a ring buffer may incur a significant cost (rela-
tive to the available time budget) if it is performed at high 
rate. When needed, this cost can be reduced at the expense 
of overall response latency by buffering multiple samples 
together and reducing the rate of communication between 
processors. For example, the NlxReader node receives data 
samples from a Neuralynx DigiLynx acquisition system at a 
rate of 32 kHz and collects batches of multiple samples (batch 
size is user configurable) before passing them on to down-
stream processing nodes. Dispatching of signals in smaller 
buffer sizes increases the probability of missing incoming 
data packets from the network.

On the consumer side of a ring buffer different strate-
gies can be used to wait for new data items, the choice of 
which impacts performance by balancing thread contention 
and CPU resources [21]. The ring buffer in Falcon supports 
five waiting strategies that can be set separately for each data 
stream output port:

 1. thread blocking using a condition variable and a lock 
(default),

 2. sending a thread to the end of the scheduler’s queue 
(yielding),

 3. polling (repeated query of the input port),
 4. sleeping (wait for a small amount of time),
 5. a progressive combination of polling/yielding/sleeping.

These strategies can be effectively deployed to process, for 
instance, streaming data that arrive at different rates on sepa-
rate ports inside one node.

Further fine-tuning and optimization of the real-time perfor-
mance of a graph is possible by altering how a node’s thread is 
handled by the OS scheduler. Both the thread priority and the 
thread affinity (i.e. bind thread to designated CPU) are config-
urable options in Falcon. In combination with CPU isolation, 
the thread affinity setting can make sure that a single CPU is 

dedicated to a single thread with demanding or critical pro-
cessing needs (e.g. source node reading from a network socket).

Clients

A small set of keyboard commands enables basic user interac-
tion with Falcon, including starting and stopping the execution 
of a graph. Full control (e.g. uploading and constructing new 
graphs, retrieving and setting state values, etc) is available for 
local and remote clients that communicate with Falcon using 
a request-reply messaging protocol. Clients can also subscribe 
to logging and update messages that Falcon broadcasts over 
the network. The ZeroMQ messaging library [31] that is used 
internally has many language bindings and thus clients can be 
written in the preferred language of the user. We have written 
a small Python module that interfaces with the Falcon server 
and which can be used as a foundation for custom, applica-
tion specific clients. On top of this library, we have created 
a simple reference graphical client, that exposes many of the 
available commands to the user. We have also build simple 
visualization clients for live monitoring of a node’s output 
data streams that are broadcast to the network using the ZMQ 
Serializer node (figure 2).

Testing hardware

Falcon was compiled with the GNU g++-5 compiler on a 
PC running 64-bit Linux Mint 18 (kernel version: 4.4.0_2.1 
generic). We used both a 32-core and a quad-core machine 
for the latency tests, while the live animal tests were con-
ducted using the 32-core machine only. The 32-core machine 
was equipped with 256 GB of RAM, 40 MB of smart cache 
and two 16-core CPUs (Intel Xeon(R) CPU E5-2698 V3 @ 
2.30 GHz) with hardware-based simultaneous multi-threading 
(Hyper-Threading) [32] enabling a total of 64 virtual cores. 
The quad-core machine had a single CPU (Intel Core i7-4790 
@ 3.60 GHz) using Hyper-Threading (for a total of 8 virtual 
cores), 16 GB of RAM and 8 MB of smart cache. Interference 
from the OS scheduler was limited by setting the priority of 
the Falcon executable to ‘real-time’ (the highest possible). We 
also pinned the data reader thread to an isolated virtual core 
to reduce the probability of missing incoming data packets.

Latency tests were carried out using both Neuralynx 
and Open Ephys data acquisition hardware. In tests with 
Neuralynx hardware, multi-channel digitized signals were 
acquired through a 128-channel DigiLynx data acquisition 
system (Neuralynx, Bozeman, MT) and sampled at 32 kHz. 
The first data port of DigiLynx was connected to a worksta-
tion running Cheetah (Neuralynx). Cheetah was used to con-
figure the DigiLynx system and to acquire, visualize and save 
data. The second data port was used to stream UDP data pack-
ages (each containing a single sample for all 128 channels) 
into the machine running Falcon. The Linux machines were 
equipped with a dedicated Ethernet card (Intel PRO/1000PF 
Dual Port Server Adapter PCI-E, Fiber Optic Network 
Adapter). An alternative way to access data streams from the 
Digilynx system is by using Neuralynx’.NET-based NetCom 
API, which interfaces with the Cheetah software. However, 

J. Neural Eng. 14 (2017) 045004
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because multi-channel data is buffered inside Cheetah in 512-
sample blocks, this approach limits the minimal round-trip 
latency to 16 ms [33]. For this reason, we read data directly 
from the Digilynx Ethernet port without using NetCom.

Signals were recorded either from an analog signal gen-
erator (Square B&K Precision, Model 3003) connected to a 
Signal Mouse (Neuralynx, Bozeman, MT) or from an array 
of tetrodes implanted in the hippocampus of a freely moving 
rat (see Experimental Methods). In all tests on Neuralynx 
hardware, analog signals were buffered using a unity-gain 
analog pre-amplifier (HS-36, Neuralynx) before digitization 
in DigiLynx.

Latency tests on Open Ephys hardware used an Open 
Ephys acquisition board with the USB2.0-compatible Opal 
Kelly XEM 6010-LX45 FPGA module, a 6-foot SPI interface 
cable and a 32-channel Intan headstage. Implementation of the 
Open Ephys reader in Falcon used the available Intan libraries 
and was based on the implementation in the open-source Open 
Ephys GUI [30]. Signals were sampled at 30 kHz.

Digital output pulses were generated by an isolated Digital 
Input/Output (DIO) module (USB-4750, Advantech Benelux, 
Breda, The Netherlands) communicating with Falcon over 
universal serial bus (USB 2.0) using the DigitalOutput node 
(figure 2) that interfaced with the vendor supplied device 
driver. A SerialOutput node communicating with an Arduino 
Uno microcontroller board could be used as an alternative 
for generating a digital output pulse. As compared to the 
Advantech DIO module, round-trip latency was approxi-
mately 1 ms higher (data not shown) and hence we did not use 
the Arduino Uno in any of the tests.

Latency measurements

To measure the round-trip latency of our Falcon-based closed-
loop system, we input a square wave signal (47 Hz for tests on 
Neuralynx hardware and 25 Hz for tests on Open Ephys hard-
ware; 50% duty cycle; 1.8 mVpp amplitude after 1000×  ampl-
itude reduction by Signal Mouse) to all test channels of the 
acquisition system (128 channels for Neuralynx, 32 channels 
for Open Ephys). For each test a total of 20 586 measurements 
were collected and analyzed.

Falcon executed a graph implementing a simple threshold-
crossing algorithm that detected the rising edge of the square 
wave. For each detected edge, Falcon sent a digital output 
pulse back to the DigiLynx acquisition system, the occurrence 
of which was timestamped and recorded together with the 
original square wave in Cheetah (figure 5(a)). For tests with 
Open Ephys hardware, the generated analog square wave was 
routed using a BNC connector to both a Neuralynx and an 
Intan headstage via two Signal Mouse devices.

All ring buffers in Falcon were set to communicate using 
the blocking strategy to limit CPU usage. This strategy was 
also shown to be efficient in other multi-threaded software for 
closed-loop applications [21]. We measured the used system 
memory as reported by the System Monitor program of Linux 
Mint.

Round-trip latency estimates the overall time lag between 
the occurrence of an event in the monitored signals and the 
time at which a feedback stimulus could be applied (e.g. by 
a stimulator or an actuator). By the same token, round-trip 
latency includes not only the delay introduced by the data pro-
cessing and transmission within Falcon, but also any latency 
due to the data transmission over the hardware (e.g. delay of 
the UDP socket or of the transmission of the output TTL). To 
better characterize the specific contribution of Falcon, we also 
measured the internal software latency that reflects the time 
needed for moving data inside a Falcon graph from source to 
sink (figure 5(b)).

Round-trip latency was measured as the time difference 
between the onset time of the square wave and the Falcon-
generated TTL pulse recorded in Cheetah. The rising edge of 
each square wave was determined offline from the recorded 
data as the timestamp of the first sample crossing the threshold 
of 100 µV on any of the test channels. For each round-trip 
latency measurement, we additionally timestamped in soft-
ware the arrival of each UDP packet and the time before the 
generation of the TTL pulse on the DIO card using a mono-
tonic nanosecond-resolution internal clock. The internal soft-
ware latency was then measured as the difference between 
these two timestamps. By subtracting the software latencies 
triggered only by the last sample loaded on the buffer (‘last-
in’ samples) from the corresponding round-trip latencies, we 

Figure 4. Diagram of graph subsystem states and transitions. For each transition, the main sequence of events is listed including the 
methods implemented by processing nodes (in italic).
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computed the distribution of the external hardware contrib-
ution of the round-trip latency.

For all latency tests, incoming samples were collected on 
a reader node in batches of 6 before being pushed through 
the remainder of the processing graph. This buffering was 
needed to reduce the probability of missing incoming UDP 
data packets.

To get an estimate of the latencies for graphs of var-
ying size, we built different processing graphs that split an 
incoming stream of multi-channel data into n parallel pipe-
lines each with m serial stages (figure 5(b)). All but the last 
serial stage was a node that passes the input stream unmodi-
fied to the output stream (all-pass FIR filter). The last serial 
stage was a detector that emitted events on its output when the 
square wave input signal crossed the threshold. The parallel 
pipelines fed into a single synchronization node that triggered 
the digital output pulse as soon as all pipelines had detected 
the threshold crossing. In all graphs tested, we used one addi-
tional parallel pipeline from the reader node to serialize to 
disk the data from a single channel using a File Serializer node 
(not shown in figure 5(b)).

To minimize the influence of the OS in scheduling the exe-
cution time of the threads, we set the priority of the Falcon 
executable to the highest level (‘real-time’). To reduce the 
probability of missing incoming data packets over network, 
besides using a 6-sample buffer, we pinned the reader node 
thread to an isolated virtual core: the isolation guaranteed that 
the reader node would always run on the same virtual core 

and that no other threads in the system would compete with 
the reader thread. The probability of missed packets was gen-
erally very low, but they did occur occasionally in our tests 
and more often so when the number of processing threads was 
high compared to the number of available cores. All tests pre-
sented in Results completed without missed packets.

Experimental methods

For recording of hippocampal multi-unit activity (MUA), a 
dual-bundle 3D-printed micro drive array [34] carrying 20 
tetrodes (bundles of four wires) and bipolar stimulation elec-
trodes was implanted in one male Long-Evans rat. Briefly, 
following sterile surgical procedures the rat was anesthetized 
with isoflurane and mounted in a stereotaxic frame. After 
exposure of the skull, anchoring screws were inserted and 
burr holes were drilled for access to the hippocampus. After 
cementing the micro-drive array in place, the rat was allowed 
to recover for at least 4 d before recordings started. All exper-
imental procedures were approved by the animal ethics com-
mittee at KU Leuven.

Following recovery from surgery, most tetrodes were 
lowered to the cell layer of hippocampal area CA1. One tet-
rode was positioned in the white matter and used as refer-
ence. Recordings lasted 53 min and occurred during a resting 
phase in which the animal was placed in a familiar sleep 
box. Seventeen tetrodes with unit activity were used for 
recordings.

Figure 5. Hardware-software setup used for the measurement of the round-trip latency with Neuralynx hardware. (a) A square wave was 
input to all test channels. Signals were digitized with a 128-channel DigiLynx acquisition system and recorded with a workstation running 
Cheetah. Signals were routed to a workstation running Falcon and producing a TTL pulse as closed-loop feedback to the acquisition 
system. Feedback was triggered by the rising edge of the square wave. The time difference between the generation of the digital output and 
the time of the rising edge was taken as a measure of round-trip latency. (b) Round-trip latency tests were executed with graphs of variable 
size (m  =  {1, 32} parallel and n  =  {1, 8} serial stages). Each graph had a reader node, zero or more all-pass digital filters, at least one 
detector of rising edges, one processor synchronizing the detection events and a digital output sink controlling a USB DIO card. Latency 
was tested on the external, internal and round-trip paths indicated on the right. Data transfer speed on the external paths is dependent only 
on the hardware, while data transfer speed on the internal paths is dependent only on the software.
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Online detection of multi-unit activity bursts

To detect bursts in real-time, we loaded into Falcon a graph 
(figure 6) composed of the following elements:

 • a reader node of class NlxReader dispatching multi-
channel data on 17 output ports that each served data 
from one tetrode sampled at 32 kHz; 

 • a pre-processing block of spike detection composed of 
17 parallel pipelines, each pipeline composed of a filter 
node of class MultiChannelFilter (Bessel 4th order, 600– 
6000 Hz in biquad cascade) and a spike detection node of 
class SpikeDetector operating with a 1 ms buffer; 

 • a MUA node of class MUAEstimator computing the 
aggregated MUA signal with a buffer of 10 ms; 

 • a burst detector node of class BurstDetector implementing 
a threshold-based algorithm for burst detection suitable 
for real-time processing; 

 • a digital node of class DigitalOutput that controlled the 
USB DIO card for closed-loop feedback.

In the online burst detection algorithm, an individual 
burst was detected as a threshold crossing in the MUA signal 
according to µ− > ∗ madsignal factor  , where µ and mad 
correspond to the running estimates of the mean and mean 
absolute deviation respectively, and factor is a user-defined 
multiplier. In our test, factor was set to 4 and adjusted online 
to 8 (for ~150 s) and back to 4 during the course of the experi-
ment. Running estimates of µ and mad were computed using 
an exponentially weighted moving average filter [5]. The span 
of the filter was set to 22.5 s (2250 samples), corresponding to 
a half-life of 7.8 s; this value was selected manually to fit the 
slow changes in the MUA signal. Detection rate was limited to 
10 Hz to simulate a maximum feedback stimulation frequency 
(as it would be the case in an actual disruption experiment).

Offline detection of multi-unit activity bursts

Spiking activity and digital burst detection pulses from Falcon 
were recorded simultaneously using Cheetah data acquisition 
software (Neuralynx, Bozeman, MT). A smoothed histogram 
(1 ms bins, Gaussian kernel with 15 ms standard deviation) of 
MUA was constructed using all recorded spikes. Slow non-burst 
fluctuations were removed from the MUA signal by detrending 
with an exponentially weighted moving average filter applied 
forward and backwards (span  =  7.5 s (750 samples); corre-
sponding to half-life of 2.6 s). Mean and standard deviation 
were calculated on the detrended MUA signal. MUA bursts 
were defined as periods in which MUA was higher than 1.5 
times the standard deviation. Burst onset and offset times were 
defined as the times in which MUA was higher than its mean at 
the closest time before and after the time of threshold crossing. 
If the time difference between two bursts was less than 30 ms, 
the two events were merged to form a single burst event.

Results

Round-trip latency

The real-time processing component of closed-loop systems 
must be able to reliably produce a response within a max-
imum predefined time (deadline) when an event of interest is 
detected [20]. Response latencies should therefore be guaran-
teed to be below a certain critical value, which depends on the 
specific application. For instance, while a value of 30–40 ms 
might be acceptable for detecting transient oscillatory patterns 
that last 70–100 ms, like hippocampal sharp-wave ripples  
[6, 35], the same value will be too high for a feedback based 
on the occurrence of an action potential.

Falcon was conceived as a general-purpose real-time soft-
ware framework. It is therefore not ideal to characterize its 
response time performance on the basis of a specific appli-
cation. For a given closed-loop application, the response 
latency is affected by the algorithm (algorithmic latency) used 
for event detection and by the computational latency intro-
duced by the closed-loop framework. To characterize Falcon’s 

Figure 6. Falcon processing graph for real-time detection of 
population bursts. A reader node parses incoming streaming neural 
signals and dispatches them to a set of parallel pipelines for high-
pass filtering and spike detection; each pipeline is processing 
channels coming from a single tetrode. Spike detectors provide the 
number of spikes detected on the tetrode in a user-defined buffer. 
Spiking data generated by each pipeline is synchronized into a 
mua estimator node which computes the multi-unit activity with a 
user-defined buffer size (greater than the buffer size used for spike 
detection). MUA data generated by the mua node is passed to a 
burst detector node and to a disk serializer sink. The burst detector 
node streams its internal statistics about the ongoing µ and mad to 
a network serializer sink to which a Python client connects. This 
client displays to the user the updated value of the variables. The 
visual feedback guides the user in adjusting the parameters that 
control the online algorithm of burst detection (like the factor used 
for threshold crossing). As soon as the online algorithm detects a 
burst, the burst detector node generates an EventData item marked 
by a ‘burst_detection’ string to both a disk serializer sink and a sink 
that controls the digital output of the closed-loop system.
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real-time performance, we used the round-trip latency as a 
measure of the minimal added computational latency. The 
round-trip latency was defined as the time difference between 
the occurrence of a trivially detectable event (with minimal 
algorithmic latency) and the time of closed-loop feedback (a 
digital pulse). We determined the round-trip latency of our 
hardware-software system using a basic edge-detection graph 
(with minimal algorithmic components) in which the latency 
is dominated by data transmission within Falcon and commu-
nication with the hardware. Latency tests were executed using 
both Neuralynx and Open Ephys hardware for reading multi-
channel neural signals (see Methods).

Tests on Neuralynx hardware

In the highest complexity graph tested, Falcon processed 128 
channels at 32 kHz using 32 parallel pipelines and 8 serial 

stages. With all 64 CPU cores enabled (32 physical cores with 
two hardware threads per core), round-trip latencies were 
well below 1 ms (figure 7(a)), with a median of 0.59 ms (99% 
interval: (0.44–0.78)). The worst-case latency over the 7 min 
test period was 3.0 ms and less than one in a thousand detec-
tions occurred with more than 1 ms lag (table 1). Round-trip 
latency remained stable during the time course of one hour 
(figure 7(b)). Considering a deadline of 1 ms as a constraint 
for a general-purpose tool for closed-loop neuroscience, 
these results demonstrate the (soft) real-time capabilities of a 
Falcon-based closed-loop system.

We next explored the specific contribution of Falcon to the 
overall closed-loop response latency. Round-trip latency has 
both external and internal contributions (figure 5(b)): external 
contributions relate to the hardware and include network 
transfer of the digitized input signals and communication 
delays to the output module, whereas internal contributions 

Figure 7. Sub-millisecond round-trip latencies of a Falcon-based closed-loop system. (a) Distribution of round-trip, internal and external 
latencies obtained with a graph with 32 parallel pipelines and eight serial stages running on a 32-core machine with hardware-based 
simultaneous multithreading (64 virtual cores). Internal and external latencies represent, respectively, the specific software- and hardware-related 
time lags that contribute to the round-trip latency (see table 1 for median latencies and 99% intervals). Contributions of detections triggered by 
samples that arrived first and last in the 6-sample buffer used in the reader node are also shown as partial densities of the distribution of internal 
latencies. Median values (with 99% intervals) were 0.19 ms (0.14–0.48) for last-in samples and 0.28 ms (0.24–0.49) for first-in samples.  
(b) The lack of drift of the median of the distribution (black line) of the latency values (scattered gray dots) indicates the temporal stability of 
the round-trip latency. Test lasted one hour and a 32  ×  8 graph was used with 64 virtual cores. (c) and (d) sub-millisecond round-trip latencies 
can be achieved also on a quad-core machine. In log-scale, the graphs show the box plots of the round-trip latencies obtained using 64 or eight 
virtual cores (corresponding to 32 and 4 physical cores) for four different combinations of parallel pipelines and serial stages of the Falcon graph. 
Outliers were determined as values lying 1.5 times the inter-quartile range below the first or above third quartile.
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only include software-related delays like the data streaming 
between nodes and synchronization lags in aggregator nodes.

External data transfer contributed to the overall round-trip  
latency slightly more than internal data transfer, with a 
median value of 0.33 ms (99% interval: (0.28–0.39)) for the 
external latency and a median value of 0.26 ms (99% interval: 
(0.15–0.45)) for the internal latency (table 1, figure 7(a)). The 
distribution of the internal latencies computed with only ‘last-
in’ samples, which were not affected by buffering-induced 
latency on the reader node (see Methods), had a lower median 
value of 0.19 ms (99% interval: (0.14–0.48)). These results 
demonstrate the limited computational overhead added by 
Falcon on our CPU hardware and highlight that Falcon can 
be versatilely deployed in closed-loop experiments with strin-
gent latency requirements.

We next asked how the size of the graph impacted the 
round-trip latency. In general, smaller graph sizes resulted 
in lower median round-trip latencies and fewer measure-
ments that exceeded the 1-ms deadline (figure 7(c), table 1). 
By reducing the number of parallel pipelines from 32 to 1, 
the reduction in median latency was limited to ~5%, from 
0.59 ms (99% interval: (0.44–0.78)) to 0.56 ms (99% interval: 
(0.41–0.94))). The graphs with a single serial stage had the 
lowest median latency (0.50 ms) and sub-millisecond worst-
case latency. Overall, these results show that the paralleliza-
tion control offered by Falcon was effective in reducing the 
overall response latency.

We next asked whether CPU hardware was critical for 
ensuring low round-trip and software latencies in simple and 
larger graphs. For this, we measured round-trip latency on a 
machine with a lower number of available CPU cores either 
the 32-core machine with only four cores enabled or a sepa-
rate quad-core machine (in both cases a total of 8 virtual cores 
was available). Again, for all graph sizes the median round-trip 
latency was well below 1 ms (table 1). For the larger graph sizes 
(32  ×  1 and 32  ×  8), the worst-case latency and the fraction 
of missed deadlines were increased when compared to the test 
with a fully enabled 32-core machine. When comparing the 
quad-core machine to the 32-core machine, we found a reduced 
median round-trip latency for the smaller graph sizes. This 
reduction is most likely explained by the higher CPU clock rate 
of the quad-core machine (3.60 GHz versus 2.30 GHz).

To test whether memory availability (rather than CPU) 
could be a bottle-neck during latency tests, we checked the 
system memory usage. Falcon’s memory usage was respec-
tively 120 MB, 27.5 MB and 12.8 MB during the executing 
of a 32  ×  8, 32  ×  1 and 1  ×  8 graph. These values are at least 
one order of magnitude below the typical amount of memory 
available on modern PCs. Although memory is not a concern 
for running Falcon, the user must ensure that the memory 
required by custom-made processors can be accommodated 
by the available system memory.

Overall, these results highlight that the number of available 
physical cores and system memory is not critical for ensuring 

Table 1. Summary of latencies for different graph sizes obtained on two workstations, a 32-machine with either 64 or eight virtual cores 
enabled and a quad-core machine with all eight virtual cores enabled, using either a Neuralynx or Open Ephys data acquisition system. 
Latencies obtained with Open Ephys are about one order of magnitude higher than with Neuralynx mostly because of the ms-order USB 
buffering.

Graph size

Round-trip latency Internal (software) latency External (hardware) latency

Median (ms)  
(99% interval)

Worst-case 
(ms)

‰ larger 
than 1 ms

Median (ms)  
(99% interval)

Worst-case 
(ms)

Median (ms)  
(99% interval)

Worst-case 
(ms)

Neuralynx  +  64 enabled virtual cores (32-core machine)

1  ×  1 0.50 (0.37–0.66) 0.72 0.0 0.19 (0.07–0.34) 0.42 0.33 (0.28–0.39) 0.43

1  ×  8 0.56 (0.41–0.94) 1.03 0.7 0.25 (0.09–0.63) 0.70 0.33 (0.28–0.39) 0.45

32  ×  1 0.50 (0.34–0.66) 0.97 0.0 0.17 (0.06–0.34) 0.64 0.32 (0.27–0.39) 0.41

32  ×  8 0.59 (0.44–0.78) 3.00 0.6 0.26 (0.15–0.45) 2.64 0.33 (0.28–0.39) 0.41

Neuralynx  +  8 enabled virtual cores (quad-core machine)

1  ×  1 0.41 (0.28–0.53) 0.56 0.0 0.11 (0.01–0.23) 0.26 0.31 (0.27–0.38) 0.40

1  ×  8 0.44 (0.31–0.56) 0.72 0.0 0.13 (0.03–0.24) 0.36 0.32 (0.27–0.38) 0.39

32  ×  1 0.44 (0.31–0.56) 1.31 0.1 0.13 (0.03–0.28) 1.03 0.31 (0.26–0.38) 0.39

32  ×  8 0.59 (0.44–0.84) 13.81 0.9 0.26 (0.15–0.50) 13.47 0.32 (0.27–0.39) 0.44

Neuralynx  +  8 virtual cores enabled (32-core machine)

1  ×  1 0.50 (0.37–0.63) 2.47 0.0 0.17 (0.05–0.31) 2.13 0.33 (0.28–0.39) 0.41

1  ×  8 0.50 (0.37–0.63) 0.75 0.0 0.18 (0.07–0.32) 0.41 0.33 (0.28–0.39) 0.41

32  ×  1 0.50 (0.37–0.66) 12.09 0.6 0.17 (0.08–0.34) 11.66 0.32 (0.27–0.38) 0.40

32  ×  8 0.66 (0.50–1.03) 29.41 6.6 0.30 (0.19–0.70) 29.05 0.32 (0.27–0.38) 0.39

Open Ephys  +  64 enabled virtual cores (32-core machine)

1  ×  1 9.22 (4.06–14.53) 14.84 n/a n/a n/a n/a n/a
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low median round-trip latencies. Real-time behavior is, how-
ever, slightly affected (more missed deadlines) when the graph 
size greatly exceeds the number of available cores and graphs 
that incorporate heavy algorithms of neural processing are 
going to be highly dependent on the number of physical cores 
(see [21]). Nevertheless, Falcon’s well-controlled paralleliza-
tion can help reach the limits of the available CPU hardware 
to achieve desired real-time capabilities.

Tests on Open Ephys hardware

To demonstrate the flexibility of Falcon in adapting to different 
data acquisition systems, we implemented a node for reading 
multi-channel neural data recorded with Open Ephys hard-
ware. For this system, the round-trip latency cannot meet the 
1 ms deadline as it is limited by the use of USB for data transfer 
and the internal 10 ms buffer size needed to prevent data loss 
[30]. For the smallest 1  ×  1 graph (processing 4 channels), 
we measured a median round-trip latency of 9.22 ms (99% 
interval: (4.06–14.53)) and a worst-case latency of 14.84 ms.

Closed-loop neuroscience applications

With the available detector nodes (figure 2), Falcon can be 
used to trigger an output upon the occurrence of a single spike 
(recorded on a single- or multi-electrode sensor), a transient 
oscillation in the extracellular field potential (e.g. hippo-
campal ripples) and a population burst.

These detections can be accomplished with acceptably low 
latencies and sufficient accuracy for closed-loop manipula-
tions. Using a SpikeDector node, single spikes on a tetrode 
can be detected within 1 ms. With a RippleDetector node we 
have been able to detect 150–250 Hz hippocampal ripple 
oscillations with 30 ms average latency from the event start 
(corresponding to less than 50% average latency relative to 
total duration of the event) and 80% sensitivity. We have suc-
cessfully coupled the detection with electrical feedback stim-
ulation to disrupt ripple events and test their role in spatial 
memory processing, replicating the experimental protocols 
of previous closed-loop studies [5–7]. The RippleDetector 
node implementation is generic and when configured with an 
appropriate filter, it could also be used to detect other tran-
sient oscillatory patterns relevant in cognition, like spindles 
(8–16 Hz), high-gamma bouts (50–125 Hz) and fast ripples 
(250–500 Hz) [36, 37].

Since hippocampal ripple events are associated with 
increased population activity, an alternative detection method 
could rely on detection of bursts in multi-unit activity. To dem-
onstrate this approach, a graph for detection of bursts from 
a population of neurons was constructed (figure 6). During 
a test on live recordings from a rat implanted with an array 
of tetrodes located in the CA1 hippocampal area (see exper-
imental methods), Falcon was able to detect population bursts 
with low latency (figure 8(a)). The median burst detection 
latency relative to the start of offline identified burst events 
was 40.51 ms (figure 8(b)), while the median relative detec-
tion latency compared to offline identified burst duration was 
42.63% (figure 8(c)).

To better understand the origin of the response latency, 
we also measured the contribution of the added latency due 
to the software latency, the external latency due to outgoing 
transmission of the digital pulse and the computational time 
involved in executing the algorithms. These added latencies 
were computed as the difference between the timestamp of the 
last sample needed to detect threshold crossing and the times-
tamp of the digital event received in Cheetah. Added latencies 
had a median value of 0.37 ms (99% interval: (0.31–7.73); see 
figure 8(d)), demonstrating that the largest contributing factor 
to the burst detection latency was the algorithmic (e.g. time to 
reach threshold) and not the computational latency.

The online burst detection algorithm was adapted for 
real-time use and thus differed from the offline algorithm. 
Nevertheless, there was a large agreement between the online 
and offline detected bursts. A total of 1954 events were detected 
both online and offline with 70.62% (1954/2767) of offline 
bursts that were detected online and 72.42% (1954/2698) of 
online bursts that were also detected offline. Most of the disa-
greement stems from differences in the time-varying thresh-
olds computed by the online and offline algorithms, which 
results in mismatched detection of mainly low amplitude 
bursts. A low fraction of bursts was detected twice online (6% 
of all online detections, corresponding to 0.05 detections s−1). 
These results illustrate how Falcon can be used to implement 
common closed-loop experiments.

Online encoding–decoding framework

Falcon’s features make it well-suited for real-time decoding 
of behavioral information (e.g. position of a freely moving 
animal) at tens of milliseconds time scales from popula-
tion activity recorded on multi-electrode arrays [38, 39], 
for example with the intent to manipulate specific hippo-
campal reactivation patterns [5–7]. In the future Falcon will 
be extended with nodes that implement decoding algorithms 
to support this application (figure 9). In the online decoding 
scenario, spike detection and likelihood computations are per-
formed independently for each electrode (or tetrode) and par-
allelization can be used to reduce overall latency. For instance, 
a recently developed decoding approach for unsorted spikes 
[40, 41], takes less than 1 ms decoding time per spike and 
could leverage Falcon’s parallelization ability for achieving 
millisecond-scale latency when applied to the activity of 
a large neuronal population recorded on tens of electrodes. 
In this application, the flexibility of Falcon can be further 
exploited to online update the encoding models based on new 
incoming spike and behavioral data for a real-time adaptive 
encoding–decoding solution (encoder node in figure 9) [40].

Discussion

Falcon is an open-source development platform for soft real-time 
analysis of streaming neural and behavioral data during closed-
loop neuroscience experiments. The creation of Falcon was driven 
by the need of a software tool that easily and flexibly implements 
different closed-loop experiments and provides direct control 
over the hardware resources of a multi-core computer.
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At its core, Falcon relies on a graph subsystem that man-
ages the execution of a fully configurable and highly cus-
tomizable processing graph. Communication between graph 
nodes is supported through shared state values and streaming 
data ports that handle arbitrary data types. Each processing 
node (source, sink, filter, detector) is mapped to a single 
thread of execution. The general problem of optimally map-
ping computations to available resources on multi-core CPUs 
and scheduling when computations are best executed remains 
a hard challenge. In Falcon, online feedback on fill levels of 
ring buffers and timing of computations can assist the user 
in manually tuning the graph topology and parameters to 
optim ize performance.

In addition to its flexibility, a major strength of Falcon is 
the very low overhead in the execution of a processing graph. 
For a variety of graph sizes tested on both 32- and 4-core CPU 
machines, the latency added by the software was less than 
0.5 ms for the large majority of measurements with only occa-
sional missing of deadlines (as expected for any soft real-time 
system). In fact, Falcon rarely missed deadlines (less than 
1 in 1000 measurements) when the number of nodes in the 
graph did not greatly exceed the number of available cores. As 
such, Falcon is a capable software platform for running sub- 
millisecond latency closed-loop neuroscience experiments.

Besides the software framework overhead, the overall 
round-trip latency of a closed-loop system based on Falcon 
also includes contributions from external data transmission 

(both on the input and output side), data buffering, and the com-
putations performed in each processing node. By adjusting the 
level of parallelization and concurrency through the number 
of parallel pipelines and number of serial stages of the graph, 
the experimenter can achieve lower real-time response laten-
cies for a given algorithm of interest. Reductions in response 
latency are primarily obtained by dividing the computational 
load over a number of parallel processing lines (‘independent 
substream parallelization’, see [21]). Limitations due to input/
output (transmission latencies) and processing hardware capa-
bilities (number of CPU cores) must, however, be considered 
and the user must also be careful not to over-parallelize the 
processing graph. In fact, the CPUs cannot run in parallel more 
threads than the number of virtual cores and an excessive level 
of parallelization can even compromise performance over a 
purely serial implementation.

Falcon round-trip latencies are comparable to if not 
lower than other closed-loop systems. The sub-millisecond 
round-trip latency that we measured on Neuralynx hardware 
is lower than the ~4 ms lower bound of NeuroRighter [29]. 
Unfortunately, detailed round-trip and software latencies 
for other open-source BCI tools in similar test conditions 
(i.e. processing of  >100 channels at high sampling rate) are 
not available. When comparing our results to Open Ephys 
software, Falcon seems to perform slightly better, with a 
~2 ms lower median latency and ~5 ms lower maximum 
latency [42].

Figure 8. Online detection of hippocampal population bursts in a freely moving rat with Falcon. (a) Top: Raster plot of 7 s of spiking 
activity recorded by the multi-tetrode array implanted in CA1 during a rest session; each row represents all spikes on a tetrode. Note 
the transient increases in firing across tetrodes. Bottom: Offline MUA activity (dark gray) of the CA1 population (computed using all 
recorded spikes and detrended with a double exponential average filter) is displayed together with the online detections (black vertical 
lines) generated by Falcon. Light-gray boxes indicate the offline-defined burst onset and offset times. Note the early detection of most of 
the bursts. (b) Distribution of the online detection latencies from the time of burst onset. The black vertical line at 40.51 ms represents the 
median of the distribution. (c) Distribution of the latencies of the online detections relative to the total duration of each burst. The black 
line at 42.63% represents the median of the distribution. (d) Distribution of the added latencies of the online detections, following the last 
sample needed to detect the burst. The black vertical line at 0.37 ms represents the median of the distribution.
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By design, Falcon is decoupled from specific hardware for 
data acquisition and closed-loop feedback. We have success-
fully interfaced Falcon with Digilynx (Neuralynx) and Open 
Ephys data acquisition systems. For Digilynx, the sample-
by-sample signal transmission over Gigabit Ethernet resulted 
in a sub-millisecond round-trip latency. For Open Ephys, 
round-trip latencies varied from 4 to 15 ms due to data trans-
mission over USB and internal buffering. Support for other 
signal sources may be added by implementation of a new 
reader node, provided the availability of Linux drivers and 
libraries that interface to the hardware and/or documentation 
that describes how to parse the incoming data stream. This 
includes generic input modules for analog and digital signals, 
and digital video/audio streams. For some commercial neural 
data acquisition systems it may be difficult to obtain access to 
the raw data stream and support from the manufacturer would 
be required. In the future, Falcon could also be integrated with 
preprocessing hardware like an FPGA or a DSP. For instance, 

instead of reading the raw data stream, Falcon may directly 
receive detected spike waveforms and provide closed-loop 
feedback after processing the spike data.

On the output side, we interfaced Falcon with a USB dig-
ital output module and an Arduino microcontroller. Digital 
output pulses can be used as triggers for external hardware, 
such as stimulus generators. Closed-loop feedback through 
microcontrollers can be used for controlling actuators and 
other devices, for example servo motors that move doors or 
robotic arms. In addition, through digital triggers and network 
communication a Falcon-based system can interact with other 
neuroscientific software applications that provide specialized 
hardware interfaces, for example to present visual stimuli on 
a screen, produce audio output or dispense food rewards (e.g. 
Bonsai [43] and Psychopy [44]).

Because Falcon was primarily designed for flexible real-
time processing of streaming experimental data and not as a 
general data acquisition and visualization software, it lacks an 
integrated graphical user interface. To perform simultaneous 
real-time processing of experimental data streams in Falcon 
and data logging and/or visualization in a graphical user 
interface, there are two options. As a first option, Falcon’s 
client-server architecture can be harnessed to achieve cus-
tomized control and implement visualization applications 
for dedicated processing graphs. Advantageously, such client 
applications can be written in a programming language most 
convenient for the user. We have written a simple reference 
client in Python for control of Falcon and processor-specific 
visualization clients for online adjustment of critical param-
eters (e.g. threshold for burst detection). Alternatively, Falcon 
could tap into a duplicate data stream generated by the acqui-
sition hardware (as is the case for Neuralynx’ Digilynx) or by 
an acquisition server (see [25]). In the latter case, the server 
is the single point of interaction with the acquisition hardware 
and serves data to multiple clients, including Falcon and a 
visualization software.

To solve common closed-loop neuroscience tasks, at pre-
sent Falcon includes three types of detectors: a spike detector, 
a ripple-like oscillation detector and a burst detector. In 
particular, we demonstrated how Falcon can be deployed 
for online detection of bursts in neural population activity 
recorded in vivo. We detected bursts with approximately 40 ms 
latency relative to offline determined onsets, with the largest 
contrib ution to the latency stemming from the algorithm (time 
to reach threshold) and not from computational and data 
transfer time inside Falcon. However, the potential of Falcon 
goes far beyond the simple experimental case of population 
burst detection. We described a real-time encoding–decoding 
scenario that leverages Falcon’s power and flexibility. Future 
work will focus implementing the necessary processing nodes 
to make this scenario reality. Given its versatility and low 
round-trip latency against high-sampling high-count input 
streams, Falcon can also be deployed for controlling EEG-
based BCIs and invasive brain–machine interfaces (BMIs) 
[45] with latency demands in the order of tens to hundreds of 
milliseconds.

Figure 9. Processing graph design for a hypothetical online 
encoding–decoding scenario with the goal to detect target spike 
patterns. The nodes inside the enclosure are duplicated for parallel 
processing of multiple electrodes.
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Finally, we foresee several additional lines of future devel-
opment. The first one relates to the use of graphical processing 
unit (GPU) calls inside processor nodes [40], for further 
boosting real-time capabilities [38, 39], especially on limited 
CPU hardware. Secondly, Falcon could achieve better con-
trol over latencies, especially over the worst-case latencies, 
by using a real-time OS rather than a standard OS (this could 
of interest for applications of cellular electrophysiology, like 
dynamic clamping). Finally, since all libraries used in Falcon 
are cross-platform, with some effort Falcon could be ported to 
Windows and thus operate on PCs in which other Windows-
specific software must be executed or installation of a dif-
ferent OS is not possible (e.g. clinical settings).

Conclusions

We presented Falcon, a novel tool for implementing a wide 
variety of closed-loop neuroscientific experiments. Falcon 
is a highly versatile open-source software capable of sub- 
millisecond response latency over high-rate (e.g. 32 kHz) 
streaming data acquired from high-count multi-electrode 
arrays (e.g. 128 channels). Falcon offers a unique combina-
tion of features that distinguish it from existing open-source 
software. In fact, it can not only be used to build arbitrary 
processing graphs with existing nodes, but it can also use 
new highly customizable data types and nodes; moreover, by 
mapping each node directly onto one thread, it empowers the 
user with direct control over CPU resources. Falcon can be 
exploited for implementing closed-loop experiments requiring 
computationally intensive neural algorithms and complex data 
structures, like population encoding and decoding of firing 
patterns from neuronal ensembles.
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