
1 © 2017 IOP Publishing Ltd Printed in the UK

Introduction

Neural dynamics are highly non-stationary and exhibit tran-
sient phenomena. Transient events can be observed at cellular
and network levels of the nervous system, such as action poten-
tials or short-lasting oscillatory patterns in the extracellular

Journal of Neural Engineering

Falcon: a highly flexible open-source
software for closed-loop neuroscience

Davide Ciliberti1,2,3 and Fabian Kloosterman1,2,3,4,5

1 Neuro-Electronic Research Flanders (NERF), Leuven, Belgium
2 Brain & Cognition Research Unit, KU Leuven, Belgium
3 VIB, Leuven, Belgium
4 IMEC, Kapeldreef 75, 3001 Leuven, Belgium

E-mail: fabian.kloosterman@nerf.be

Received 29 December 2016, revised 4 May 2017
Accepted for publication 26 May 2017
Published 21 June 2017

Abstract
Objective. Closed-loop experiments provide unique insights into brain dynamics and function.
To facilitate a wide range of closed-loop experiments, we created an open-source software
platform that enables high-performance real-time processing of streaming experimental data.
Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and
execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single
thread and nodes communicate with each other through thread-safe buffers. The framework
allows for easy implementation of new processing nodes and data types. Falcon was tested
both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial
acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-
loop TTL pulses were generated with a USB module for digital output. We characterized the
round-trip latency of our Falcon-based closed-loop system, as well as the specific latency
contribution of the software architecture, by testing processing graphs with up to 32 parallel
pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection
of population bursts recorded live from the hippocampus of a freely moving rat. Main results.
On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h,
while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the
software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and
4-core workstations. Falcon was used successfully to detect population bursts online with
~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop
neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control
of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community
for implementing a wide variety of closed-loop experiments, including those requiring use of
complex data structures and real-time execution of computationally intensive algorithms, such
as population neural decoding/encoding from large cell assemblies.

Keywords: closed-loop neuroscience, multi-threaded software, real-time processing,
online burst detection, open-source software

(Some figures may appear in colour only in the online journal)

D Ciliberti and F Kloosterman

Printed in the UK

045004

JNEIEZ

© 2017 IOP Publishing Ltd

14

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aa7526

Paper

4

Journal of Neural Engineering

IOP

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

5 Author to whom any correspondence should be addressed.

2017

1741-2552/17/045004+16$33.00

https://doi.org/10.1088/1741-2552/aa7526J. Neural Eng. 14 (2017) 045004 (16pp)

mailto:fabian.kloosterman@nerf.be
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aa7526&domain=pdf&date_stamp=2017-06-21
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1741-2552/aa7526

D Ciliberti and F Kloosterman

2

field potential (e.g. hippocampal sharp-wave ripples [1]).
Neither experiments adopting traditional open-loop stimulus-
response paradigms, nor internal-state analysis of spontaneous
neural activity that only identifies their correlative aspects, can
assess the computational role of transient neural events. In con-
trast, experiments adopting a closed-loop paradigm, in which
the stimulus is conditional on the state of neural activity [2–4],
can causally determine the contribution of transient events to
neural computations [5–10]. Closed-loop approaches are also
relevant in clinical settings, like neuroprosthetics [11], detec-
tion of seizure in epileptic patients [12] and adaptive deep
brain stimulation protocols for Parkinson’s disease [13].

In its broader meaning, closed-loop neuroscience covers
any interaction of the neural system with the outside world
[14]. Thus, it also includes experiments in which the input is
not of neural origin, e.g. a behavioral measurement (obtained
with video-monitoring or specific sensors), or in which the
output is not directed to nervous tissue but to the outer world,
e.g. presentation of visual stimuli conditional on events
in the LFP signal [15] or brain–computer interface (BCI)
applications [16].

While the nature of the input and output can be diverse,
all closed-loop systems need a real-time processing comp-
onent that timely detects the occurrence of transient events of
interest [14] and responds within a specified time (‘deadline’)
[17, 18]. Hardware solutions based on integrated circuits,
field-programmable gate-arrays (FPGAs), digital signal pro-
cessors (DSPs) or other custom-built hardware [19] are well
suited for real-time processing, as the computational time
can be made deterministic and hard real-time requirements
(in which a missed deadline is considered a system failure)
can be met [18]. Nonetheless, the diversity of closed-loop
experimental algorithms [4] and conditions (e.g. integration
of video-monitoring with multi-channel electrophysiological
recordings [5]) requires not only computational speed but also
high flexibility. When flexibility is critical, software solu-
tions are more advantageous over purely hardware solutions,
as new algorithms can be quickly changed by simply recom-
piling or running a new version of the code. Importantly, as a
closed-loop experiment is intrinsically defined by its real-time
algorithm, cross-laboratory sharing of such algorithm is much
easier and facilitates experimental reproducibility. Moreover,
maintenance and development are more tractable than with
purely hardware solutions.

In software, hard real-time requirements can be met only by
using a real-time operating system (OS). However, soft real-
time requirements, in which deadlines can be missed occasion-
ally [20], can be met on a standard OS and are sufficient for
many applications. To achieve these requirements when run-
ning computationally intensive algorithms, software design
patterns must harness parallelization. A software design pat-
tern that uses parallelization can rely on multi-threading, i.e.
the ability of a CPU to handle multiple threads of execution
[17], and leverage the presence of more than one physical core
inside modern CPUs to improve throughput and latency [21].

To facilitate the implementation of customized closed-loop
experiments with different computational loads, flexibility in
the software design is central. Yet, most open-source software

solutions have been developed around specific applications,
like EEG-based BCIs [22–26] or cellular electrophysiology
[27, 28], and cannot be easily extended outside the original
scope. For instance, EEG- and ECoG-based BCI software
platforms generally process signals acquired at low sam-
pling rate (<2 kHz) and process data in batches of hundreds
of milliseconds. These platforms, however, do not focus on
support for closed-loop experiments that require millisecond-
scale feedback given streaming data at higher sampling rate
(>20 kHz). On the other hand, software solutions for cellular
electrophysiology can process signals sampled at high rate
with very low latencies (<10 µs), but offer little support for
parallel processing of multi-channel signals (e.g. RTXI [28]
has only a single real-time thread).

Following a different approach, the hardware-software plat-
forms NeuroRighter [29] and Open Ephys [30] are primarily
designed for data acquisition, but also support closed-loop
applications (dynamic clamp; real-time detection of behavior,
neural oscillations or individual spikes). However, such plat-
forms still have important limitations in terms of flexibility
as they are tailored to specific hardware, lack the ability of
the user to have direct control over the CPU resources (thus
potentially hampering performance) and limit the implemen-
tation of new processing elements to the use of only pre-
determined data types.

To meet the needs of a highly versatile closed-loop soft-
ware, we designed Falcon, a highly flexible open-source soft-
ware platform for real-time analysis of streaming experimental
data. Falcon is built as a client-server application and uses a
graph-based definition for implementing processing graphs in
which each node is mapped to a separate thread of execution
(giving the user direct control over CPU resources). Falcon
comes equipped with basic processing nodes (e.g. spike detec-
tion and digital filtering), basic data types (e.g. MultiChannel
and Event data) and its design makes it easy to implement new
processing nodes and data types for customized closed-loop
experiments.

Here we give a description of the software architecture of
Falcon and demonstrate its real-time processing capabilities
by showing sub-millisecond round-trip latency in processing
128 channels streaming data at 32 kHz. As an example of
closed-loop neuroscience application, we also show how
Falcon was used to detect in real-time population bursts from
the hippocampus of a freely moving rat.

Methods

Software architecture

Falcon was conceptualized as a general-purpose soft real-time
processing software that operates on incoming data streams
and produces outputs that can be used in closed-loop experi-
ments (figure 1). Falcon is written in the object-oriented
and compiled C++11 language and it runs on Linux-based
computer systems. Its modular architecture facilitates main-
tenance and development of new features. The source code
is made available under GPL3 license at http://bitbucket.org/
kloostermannerflab.

J. Neural Eng. 14 (2017) 045004

http://bitbucket.org/kloostermannerflab
http://bitbucket.org/kloostermannerflab

D Ciliberti and F Kloosterman

3

By design, Falcon is dedicated to the processing of data
streams and is separated from (graphical) user interfaces in a
client-server architecture. Clients communicate with Falcon
over network connections to control and monitor data pro-
cessing or visualize intermediate and final outputs. Clients can
be written in any programming language with support for the
ZeroMQ messaging library [31].

Internally, Falcon is composed of three interacting subsys-
tems (figure 1(a)): a commands subsystem that receives and
parses external commands; a logging subsystem that relays
internal status and error messages to the outside; a graph sub-
system that constructs and executes a flow graph for data pro-
cessing. The flow graph is composed of processing nodes and
directed data links between the nodes (figure 1(b)). To take
advantage of parallel and concurrent computing and give the
user maximum control of CPU resources, each Falcon node is
mapped to a logical thread of execution.

Processing nodes

The building blocks of a processing graph are nodes that per-
form an operation on one or more incoming data streams and
produce one or more outgoing data streams (figure 1(c)). Data
streams flow to/from processing nodes through input/output
ports. Each port manages one or more streams (connected to
separate slots on the port) that all share the same data type.
A port either has a predefined number of slots, or it dynami-
cally expands the number of slots depending on how many
data streams are connected to it. Processing nodes with no
input ports act as data sources; for example, they read data
from a network socket or a file. Nodes with no output ports
act as data sinks; their processing may involve serialization
to disk or network or simply logging the arrival of specific

data of interest. Finally, nodes with at least one input and one
output port act as filters or detectors. Whereas filters gener-
ally transform continuous input data streams into different
data streams, detectors identify the occurrence of a transition
in the neural/behavioral input stream(s) that is relevant for a
closed-loop feedback.

Data streams consists of data packets that flow between
nodes through concurrent ring buffers. The ring buffers are
owned by the output slots and contain pre-allocated data
packets. Importantly, the ring buffer guarantees thread-safety
and prevents other synchronization errors (like dead-locks)
inside the Falcon process. Multiple downstream input slots
can connect to the same ring buffer to receive the same data
stream (i.e. single producer, multiple consumer). A hierar-
chical type system is defined for data packets that facilitates
the validation of connections between processor nodes based
on data type. Currently, four data types and corresponding data
objects have been defined: MultiChannelData (containing an
array of N samples for C channels), EventData (containing
an event string), SpikeData (containing spike times and peak
amplitudes) and MUAData (containing the number spikes in
a predefined time bin).

Processing nodes may also share state values with each
other and with external clients. State values were implemented
as atomic variables to prevent data races across threads.
Access to shared state values is governed by read/write per-
missions. Shared states are equivalent to unbuffered data links
and can be used for sharing slow-changing variables inside
and outside the Falcon server.

We have implemented a small library of processing nodes
that support basic processing of electrophysiology signals, like
digital signal filtering (supporting FIR filters and IIR filters in
biquad cascade), down-sampling, and detection of spikes or

Figure 1. Overview of Falcon software. (a) Falcon is based on a client-server architecture. The Falcon server is composed of three main
subsystems. The graph subsystem manages the construction and execution of a user-defined processing graph that analyzes incoming
behavioral and neural data streams and provides closed-loop feedback. The commands subsystem listens for and acts on user commands
originating from the keyboard or remote client. Finally, the logging subsystem logs all internal messages (information, debug, warnings,
updates and errors) to a number of destinations, including screen, disk and network. (b) Example graph with a reader node that receives
data over the network and produces two data streams. The two streams pass through filter nodes, the outputs of which are combined into an
aggregator node. Finally, the aggregated data stream passes through a detector and the generated event is absorbed by a sink. The two filter
nodes share a state value (red dots connected by dashed line). (c) A processing node retrieves data packets arriving on its input port(s) and
publishes processed data packets on its output port(s). Each port handles data streams with identical data type through one or more slots. A
processing node can also share state values with other nodes. State values may also be read and/or modified by external clients and/or by
other nodes.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

4

bursts (figure 2). For each data type, we also implemented a set
of test sources that generate a stream of the specific data type
(e.g. EventSource streams user-defined EventData at a fixed
rate).

Real-time processing pipelines that only require the avail-
able processing nodes can be easily configured without the
need for recompilation of Falcon software. New processing
nodes and data types can be added by those familiar with
C++11 programming. This is made very straightforward by

the design pattern utilized in Falcon: in fact, a new data or
processor class can be written by simply deriving the existent
parent class (IData or IProcessor) and overriding the virtual
methods.

Processing graph

Falcon constructs and configures the processing graph
according to a user-provided description of the processing

Figure 2. Library of available Falcon processors. Processors can be functionally classified as data sources (with no input ports, they read
input data from network or disk), data sinks (with no output ports, they consume incoming data by producing a digital output for closed-
loop feedback, serializing data to disk or network or logging information about the incoming data), filters (they transform a continuous data
stream on the input into a different continuous data stream on the output) and detectors (they transform an incoming continuous data stream
into an irregular stream of events of experimental interests, e.g. ‘population burst’). Not shown: Dummy Sink (for testing purposes).

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

5

nodes and their interconnections written in human-readable
YAML language (figure 3). In the graph definition, each pro-
cessing node is identified by a unique name and class and
is further parameterized by a set of options and initial state
values. The graph definition has a convenient and compact
syntax to define connections between output and input data
ports. For ports with a variable number of slots, new connec-
tions automatically create additional slots, unless a specific
slot number is requested.

At any given time, the graph subsystem is in one of the fol-
lowing three states: ‘no graph’, ‘ready’ and ‘run’. Transitions
between these states are triggered by user commands
(figure 4).

Initially, the graph subsystem has no processing graph
defined and is in the ‘no graph’ state. Following a request to
build a new graph, the subsystem will parse the graph defini-
tion and construct the processing nodes. The nodes then have
the opportunity to configure themselves and create their input
and output ports. Next, Falcon routes the data streams between
output and input ports after a check for data type compatibility
and links shared state values. During a subsequent negotiation
phase, the parameters of a data stream (e.g. stream rate) and
the data packet type (e.g. number of channels and samples) are
fixed. This phase is followed by the creation of ring buffers
that hold the data packets that will be streamed between con-
nected nodes. After all nodes are constructed, configured and
connected, each node is given the opportunity to do a one-time
preparation (e.g. to load resources or allocate data structures).
Destruction of a graph follows the reverse sequence, with first
a per-node clean-up and a final destruction of connection and
node objects.

Once a graph is built, a processing run can be initiated
and terminated through start/stop commands. When a run
is started, node threads are started and after a per-run pre-
processing step they wait for a go signal to enter their main
processing loop. As soon as a run is terminated, node threads
are signaled to break out their processing loop, perform post-
processing and exit. The pre- and post- processing steps allow
the node to execute pre-computations that are independent of
the input data stream.

Parallelism and concurrency

Splitting the computation across multiple connected nodes in
a graph has the benefit of modularization and flexibility that
enables simple construction of new processing pipelines from
a basic set of nodes. This flexibility is further enhanced by
the implementation of algorithmic building blocks (e.g. FIR
filter, threshold-crossing detector) that form the basis of node
computations.

The modularity provided by the nodes allows Falcon
to leverage the power of multi-core processors by map-
ping each node in the graph to a separate thread of exe-
cution. Whereas multiple threads on a single core allow
multiple tasks to run concurrently, threads executed across
different cores run in parallel. Thus, on multi-core CPUs
multi-threading helps to speed up data processing. This
allows the system to not only keep up with the incoming

Figure 3. Example of a configuration file defining a Falcon graph
in YAML language. A graph definition has three sections that
define the processing nodes, the connections among nodes and the
state connections. The processors section (A) contains a map of
processor node definitions, including the type of node (class) and
configurable options. For example, the source node (B) is of class
NlxReader: it implements a processor that reads neural data from
a Neuralynx DigiLynx acquisition system. Its channelmap option
determines how signal channels are mapped to the output streams
of the node. Two output ports ‘tt1’ and ‘tt2’ are listed, with ‘tt1’
streaming data from channels 0, 1, 2 and 3. The filter nodes are of
class MultiChannelFilter which implements a processor that applies
a digital (FIR/IIR) filter to incoming multi-channel data streams.
The filter coefficients are read from a file named ‘spike.filter’ (C).
Note that here the file path is specified as a URI, in which repo://
has been configured to point to the local GIT repository (the loaded
filter, in this case, is part of the open-source Falcon repository). In
(D), two nodes of class SpikeDetector are created: in the options
section, the user can set the threshold for spike detection, the buffer
size and the use of inverted or non-inverted signals for detecting
spikes. As for the filter nodes, two identical nodes are conveniently
defined at once by appending a range of numbers between brackets.
By virtue of their data type, individual data packets in streams know
how to serialize their contents. A generic FileSerializer node (E)
takes advantages of this capability and can be used to save data
streams to disk. The connections section (F) contains a list of links
between output and input ports, and their slots. Finally, the states
section (G) contains a list of processing node states that should be
linked (section is commented because there are no states that need
to be linked in this particular graph).

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

6

data stream, but also to reduce closed-loop response
latencies to values compatible with the constraints of the
experiment [21].

Depending on the available hardware (i.e. number of CPUs
and cores) and the application, computations in Falcon can
either be split across many nodes (and threads) or grouped
within a single node. For example, a graph may contain a
single node that filters multiple data streams concurrently (e.g.
MultiChannelFilter in figure 2), or many such nodes that filter
data streams in parallel.

The average time required for processing incoming data
should always be less than the total available compute time
(the inverse of the data stream rate). If this basic requirement
is violated, either there will be a growing backlog of data
leading to increased latencies and eventually a break-down or
stalling of the system, or data items will be dropped. The ring
buffers between processing nodes serve to decouple the nodes
and reduce the impact of fluctuations in processing time and
stream rate that could lead to backlogs or missed data items.
In Falcon, ring buffer sizes are configurable and high-water
level indicators help to pinpoint potential weak spots in the
processing graph.

Shuttling data packets between two connected processing
nodes through a ring buffer may incur a significant cost (rela-
tive to the available time budget) if it is performed at high
rate. When needed, this cost can be reduced at the expense
of overall response latency by buffering multiple samples
together and reducing the rate of communication between
processors. For example, the NlxReader node receives data
samples from a Neuralynx DigiLynx acquisition system at a
rate of 32 kHz and collects batches of multiple samples (batch
size is user configurable) before passing them on to down-
stream processing nodes. Dispatching of signals in smaller
buffer sizes increases the probability of missing incoming
data packets from the network.

On the consumer side of a ring buffer different strate-
gies can be used to wait for new data items, the choice of
which impacts performance by balancing thread contention
and CPU resources [21]. The ring buffer in Falcon supports
five waiting strategies that can be set separately for each data
stream output port:

 1. thread blocking using a condition variable and a lock
(default),

 2. sending a thread to the end of the scheduler’s queue
(yielding),

 3. polling (repeated query of the input port),
 4. sleeping (wait for a small amount of time),
 5. a progressive combination of polling/yielding/sleeping.

These strategies can be effectively deployed to process, for
instance, streaming data that arrive at different rates on sepa-
rate ports inside one node.

Further fine-tuning and optimization of the real-time perfor-
mance of a graph is possible by altering how a node’s thread is
handled by the OS scheduler. Both the thread priority and the
thread affinity (i.e. bind thread to designated CPU) are config-
urable options in Falcon. In combination with CPU isolation,
the thread affinity setting can make sure that a single CPU is

dedicated to a single thread with demanding or critical pro-
cessing needs (e.g. source node reading from a network socket).

Clients

A small set of keyboard commands enables basic user interac-
tion with Falcon, including starting and stopping the execution
of a graph. Full control (e.g. uploading and constructing new
graphs, retrieving and setting state values, etc) is available for
local and remote clients that communicate with Falcon using
a request-reply messaging protocol. Clients can also subscribe
to logging and update messages that Falcon broadcasts over
the network. The ZeroMQ messaging library [31] that is used
internally has many language bindings and thus clients can be
written in the preferred language of the user. We have written
a small Python module that interfaces with the Falcon server
and which can be used as a foundation for custom, applica-
tion specific clients. On top of this library, we have created
a simple reference graphical client, that exposes many of the
available commands to the user. We have also build simple
visualization clients for live monitoring of a node’s output
data streams that are broadcast to the network using the ZMQ
Serializer node (figure 2).

Testing hardware

Falcon was compiled with the GNU g++-5 compiler on a
PC running 64-bit Linux Mint 18 (kernel version: 4.4.0_2.1
generic). We used both a 32-core and a quad-core machine
for the latency tests, while the live animal tests were con-
ducted using the 32-core machine only. The 32-core machine
was equipped with 256 GB of RAM, 40 MB of smart cache
and two 16-core CPUs (Intel Xeon(R) CPU E5-2698 V3 @
2.30 GHz) with hardware-based simultaneous multi-threading
(Hyper-Threading) [32] enabling a total of 64 virtual cores.
The quad-core machine had a single CPU (Intel Core i7-4790
@ 3.60 GHz) using Hyper-Threading (for a total of 8 virtual
cores), 16 GB of RAM and 8 MB of smart cache. Interference
from the OS scheduler was limited by setting the priority of
the Falcon executable to ‘real-time’ (the highest possible). We
also pinned the data reader thread to an isolated virtual core
to reduce the probability of missing incoming data packets.

Latency tests were carried out using both Neuralynx
and Open Ephys data acquisition hardware. In tests with
Neuralynx hardware, multi-channel digitized signals were
acquired through a 128-channel DigiLynx data acquisition
system (Neuralynx, Bozeman, MT) and sampled at 32 kHz.
The first data port of DigiLynx was connected to a worksta-
tion running Cheetah (Neuralynx). Cheetah was used to con-
figure the DigiLynx system and to acquire, visualize and save
data. The second data port was used to stream UDP data pack-
ages (each containing a single sample for all 128 channels)
into the machine running Falcon. The Linux machines were
equipped with a dedicated Ethernet card (Intel PRO/1000PF
Dual Port Server Adapter PCI-E, Fiber Optic Network
Adapter). An alternative way to access data streams from the
Digilynx system is by using Neuralynx’.NET-based NetCom
API, which interfaces with the Cheetah software. However,

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

7

because multi-channel data is buffered inside Cheetah in 512-
sample blocks, this approach limits the minimal round-trip
latency to 16 ms [33]. For this reason, we read data directly
from the Digilynx Ethernet port without using NetCom.

Signals were recorded either from an analog signal gen-
erator (Square B&K Precision, Model 3003) connected to a
Signal Mouse (Neuralynx, Bozeman, MT) or from an array
of tetrodes implanted in the hippocampus of a freely moving
rat (see Experimental Methods). In all tests on Neuralynx
hardware, analog signals were buffered using a unity-gain
analog pre-amplifier (HS-36, Neuralynx) before digitization
in DigiLynx.

Latency tests on Open Ephys hardware used an Open
Ephys acquisition board with the USB2.0-compatible Opal
Kelly XEM 6010-LX45 FPGA module, a 6-foot SPI interface
cable and a 32-channel Intan headstage. Implementation of the
Open Ephys reader in Falcon used the available Intan libraries
and was based on the implementation in the open-source Open
Ephys GUI [30]. Signals were sampled at 30 kHz.

Digital output pulses were generated by an isolated Digital
Input/Output (DIO) module (USB-4750, Advantech Benelux,
Breda, The Netherlands) communicating with Falcon over
universal serial bus (USB 2.0) using the DigitalOutput node
(figure 2) that interfaced with the vendor supplied device
driver. A SerialOutput node communicating with an Arduino
Uno microcontroller board could be used as an alternative
for generating a digital output pulse. As compared to the
Advantech DIO module, round-trip latency was approxi-
mately 1 ms higher (data not shown) and hence we did not use
the Arduino Uno in any of the tests.

Latency measurements

To measure the round-trip latency of our Falcon-based closed-
loop system, we input a square wave signal (47 Hz for tests on
Neuralynx hardware and 25 Hz for tests on Open Ephys hard-
ware; 50% duty cycle; 1.8 mVpp amplitude after 1000× ampl-
itude reduction by Signal Mouse) to all test channels of the
acquisition system (128 channels for Neuralynx, 32 channels
for Open Ephys). For each test a total of 20 586 measurements
were collected and analyzed.

Falcon executed a graph implementing a simple threshold-
crossing algorithm that detected the rising edge of the square
wave. For each detected edge, Falcon sent a digital output
pulse back to the DigiLynx acquisition system, the occurrence
of which was timestamped and recorded together with the
original square wave in Cheetah (figure 5(a)). For tests with
Open Ephys hardware, the generated analog square wave was
routed using a BNC connector to both a Neuralynx and an
Intan headstage via two Signal Mouse devices.

All ring buffers in Falcon were set to communicate using
the blocking strategy to limit CPU usage. This strategy was
also shown to be efficient in other multi-threaded software for
closed-loop applications [21]. We measured the used system
memory as reported by the System Monitor program of Linux
Mint.

Round-trip latency estimates the overall time lag between
the occurrence of an event in the monitored signals and the
time at which a feedback stimulus could be applied (e.g. by
a stimulator or an actuator). By the same token, round-trip
latency includes not only the delay introduced by the data pro-
cessing and transmission within Falcon, but also any latency
due to the data transmission over the hardware (e.g. delay of
the UDP socket or of the transmission of the output TTL). To
better characterize the specific contribution of Falcon, we also
measured the internal software latency that reflects the time
needed for moving data inside a Falcon graph from source to
sink (figure 5(b)).

Round-trip latency was measured as the time difference
between the onset time of the square wave and the Falcon-
generated TTL pulse recorded in Cheetah. The rising edge of
each square wave was determined offline from the recorded
data as the timestamp of the first sample crossing the threshold
of 100 µV on any of the test channels. For each round-trip
latency measurement, we additionally timestamped in soft-
ware the arrival of each UDP packet and the time before the
generation of the TTL pulse on the DIO card using a mono-
tonic nanosecond-resolution internal clock. The internal soft-
ware latency was then measured as the difference between
these two timestamps. By subtracting the software latencies
triggered only by the last sample loaded on the buffer (‘last-
in’ samples) from the corresponding round-trip latencies, we

Figure 4. Diagram of graph subsystem states and transitions. For each transition, the main sequence of events is listed including the
methods implemented by processing nodes (in italic).

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

8

computed the distribution of the external hardware contrib-
ution of the round-trip latency.

For all latency tests, incoming samples were collected on
a reader node in batches of 6 before being pushed through
the remainder of the processing graph. This buffering was
needed to reduce the probability of missing incoming UDP
data packets.

To get an estimate of the latencies for graphs of var-
ying size, we built different processing graphs that split an
incoming stream of multi-channel data into n parallel pipe-
lines each with m serial stages (figure 5(b)). All but the last
serial stage was a node that passes the input stream unmodi-
fied to the output stream (all-pass FIR filter). The last serial
stage was a detector that emitted events on its output when the
square wave input signal crossed the threshold. The parallel
pipelines fed into a single synchronization node that triggered
the digital output pulse as soon as all pipelines had detected
the threshold crossing. In all graphs tested, we used one addi-
tional parallel pipeline from the reader node to serialize to
disk the data from a single channel using a File Serializer node
(not shown in figure 5(b)).

To minimize the influence of the OS in scheduling the exe-
cution time of the threads, we set the priority of the Falcon
executable to the highest level (‘real-time’). To reduce the
probability of missing incoming data packets over network,
besides using a 6-sample buffer, we pinned the reader node
thread to an isolated virtual core: the isolation guaranteed that
the reader node would always run on the same virtual core

and that no other threads in the system would compete with
the reader thread. The probability of missed packets was gen-
erally very low, but they did occur occasionally in our tests
and more often so when the number of processing threads was
high compared to the number of available cores. All tests pre-
sented in Results completed without missed packets.

Experimental methods

For recording of hippocampal multi-unit activity (MUA), a
dual-bundle 3D-printed micro drive array [34] carrying 20
tetrodes (bundles of four wires) and bipolar stimulation elec-
trodes was implanted in one male Long-Evans rat. Briefly,
following sterile surgical procedures the rat was anesthetized
with isoflurane and mounted in a stereotaxic frame. After
exposure of the skull, anchoring screws were inserted and
burr holes were drilled for access to the hippocampus. After
cementing the micro-drive array in place, the rat was allowed
to recover for at least 4 d before recordings started. All exper-
imental procedures were approved by the animal ethics com-
mittee at KU Leuven.

Following recovery from surgery, most tetrodes were
lowered to the cell layer of hippocampal area CA1. One tet-
rode was positioned in the white matter and used as refer-
ence. Recordings lasted 53 min and occurred during a resting
phase in which the animal was placed in a familiar sleep
box. Seventeen tetrodes with unit activity were used for
recordings.

Figure 5. Hardware-software setup used for the measurement of the round-trip latency with Neuralynx hardware. (a) A square wave was
input to all test channels. Signals were digitized with a 128-channel DigiLynx acquisition system and recorded with a workstation running
Cheetah. Signals were routed to a workstation running Falcon and producing a TTL pulse as closed-loop feedback to the acquisition
system. Feedback was triggered by the rising edge of the square wave. The time difference between the generation of the digital output and
the time of the rising edge was taken as a measure of round-trip latency. (b) Round-trip latency tests were executed with graphs of variable
size (m = {1, 32} parallel and n = {1, 8} serial stages). Each graph had a reader node, zero or more all-pass digital filters, at least one
detector of rising edges, one processor synchronizing the detection events and a digital output sink controlling a USB DIO card. Latency
was tested on the external, internal and round-trip paths indicated on the right. Data transfer speed on the external paths is dependent only
on the hardware, while data transfer speed on the internal paths is dependent only on the software.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

9

Online detection of multi-unit activity bursts

To detect bursts in real-time, we loaded into Falcon a graph
(figure 6) composed of the following elements:

 • a reader node of class NlxReader dispatching multi-
channel data on 17 output ports that each served data
from one tetrode sampled at 32 kHz;

 • a pre-processing block of spike detection composed of
17 parallel pipelines, each pipeline composed of a filter
node of class MultiChannelFilter (Bessel 4th order, 600–
6000 Hz in biquad cascade) and a spike detection node of
class SpikeDetector operating with a 1 ms buffer;

 • a MUA node of class MUAEstimator computing the
aggregated MUA signal with a buffer of 10 ms;

 • a burst detector node of class BurstDetector implementing
a threshold-based algorithm for burst detection suitable
for real-time processing;

 • a digital node of class DigitalOutput that controlled the
USB DIO card for closed-loop feedback.

In the online burst detection algorithm, an individual
burst was detected as a threshold crossing in the MUA signal
according to µ− > ∗ madsignal factor , where µ and mad
correspond to the running estimates of the mean and mean
absolute deviation respectively, and factor is a user-defined
multiplier. In our test, factor was set to 4 and adjusted online
to 8 (for ~150 s) and back to 4 during the course of the experi-
ment. Running estimates of µ and mad were computed using
an exponentially weighted moving average filter [5]. The span
of the filter was set to 22.5 s (2250 samples), corresponding to
a half-life of 7.8 s; this value was selected manually to fit the
slow changes in the MUA signal. Detection rate was limited to
10 Hz to simulate a maximum feedback stimulation frequency
(as it would be the case in an actual disruption experiment).

Offline detection of multi-unit activity bursts

Spiking activity and digital burst detection pulses from Falcon
were recorded simultaneously using Cheetah data acquisition
software (Neuralynx, Bozeman, MT). A smoothed histogram
(1 ms bins, Gaussian kernel with 15 ms standard deviation) of
MUA was constructed using all recorded spikes. Slow non-burst
fluctuations were removed from the MUA signal by detrending
with an exponentially weighted moving average filter applied
forward and backwards (span = 7.5 s (750 samples); corre-
sponding to half-life of 2.6 s). Mean and standard deviation
were calculated on the detrended MUA signal. MUA bursts
were defined as periods in which MUA was higher than 1.5
times the standard deviation. Burst onset and offset times were
defined as the times in which MUA was higher than its mean at
the closest time before and after the time of threshold crossing.
If the time difference between two bursts was less than 30 ms,
the two events were merged to form a single burst event.

Results

Round-trip latency

The real-time processing component of closed-loop systems
must be able to reliably produce a response within a max-
imum predefined time (deadline) when an event of interest is
detected [20]. Response latencies should therefore be guaran-
teed to be below a certain critical value, which depends on the
specific application. For instance, while a value of 30–40 ms
might be acceptable for detecting transient oscillatory patterns
that last 70–100 ms, like hippocampal sharp-wave ripples
[6, 35], the same value will be too high for a feedback based
on the occurrence of an action potential.

Falcon was conceived as a general-purpose real-time soft-
ware framework. It is therefore not ideal to characterize its
response time performance on the basis of a specific appli-
cation. For a given closed-loop application, the response
latency is affected by the algorithm (algorithmic latency) used
for event detection and by the computational latency intro-
duced by the closed-loop framework. To characterize Falcon’s

Figure 6. Falcon processing graph for real-time detection of
population bursts. A reader node parses incoming streaming neural
signals and dispatches them to a set of parallel pipelines for high-
pass filtering and spike detection; each pipeline is processing
channels coming from a single tetrode. Spike detectors provide the
number of spikes detected on the tetrode in a user-defined buffer.
Spiking data generated by each pipeline is synchronized into a
mua estimator node which computes the multi-unit activity with a
user-defined buffer size (greater than the buffer size used for spike
detection). MUA data generated by the mua node is passed to a
burst detector node and to a disk serializer sink. The burst detector
node streams its internal statistics about the ongoing µ and mad to
a network serializer sink to which a Python client connects. This
client displays to the user the updated value of the variables. The
visual feedback guides the user in adjusting the parameters that
control the online algorithm of burst detection (like the factor used
for threshold crossing). As soon as the online algorithm detects a
burst, the burst detector node generates an EventData item marked
by a ‘burst_detection’ string to both a disk serializer sink and a sink
that controls the digital output of the closed-loop system.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

10

real-time performance, we used the round-trip latency as a
measure of the minimal added computational latency. The
round-trip latency was defined as the time difference between
the occurrence of a trivially detectable event (with minimal
algorithmic latency) and the time of closed-loop feedback (a
digital pulse). We determined the round-trip latency of our
hardware-software system using a basic edge-detection graph
(with minimal algorithmic components) in which the latency
is dominated by data transmission within Falcon and commu-
nication with the hardware. Latency tests were executed using
both Neuralynx and Open Ephys hardware for reading multi-
channel neural signals (see Methods).

Tests on Neuralynx hardware

In the highest complexity graph tested, Falcon processed 128
channels at 32 kHz using 32 parallel pipelines and 8 serial

stages. With all 64 CPU cores enabled (32 physical cores with
two hardware threads per core), round-trip latencies were
well below 1 ms (figure 7(a)), with a median of 0.59 ms (99%
interval: (0.44–0.78)). The worst-case latency over the 7 min
test period was 3.0 ms and less than one in a thousand detec-
tions occurred with more than 1 ms lag (table 1). Round-trip
latency remained stable during the time course of one hour
(figure 7(b)). Considering a deadline of 1 ms as a constraint
for a general-purpose tool for closed-loop neuroscience,
these results demonstrate the (soft) real-time capabilities of a
Falcon-based closed-loop system.

We next explored the specific contribution of Falcon to the
overall closed-loop response latency. Round-trip latency has
both external and internal contributions (figure 5(b)): external
contributions relate to the hardware and include network
transfer of the digitized input signals and communication
delays to the output module, whereas internal contributions

Figure 7. Sub-millisecond round-trip latencies of a Falcon-based closed-loop system. (a) Distribution of round-trip, internal and external
latencies obtained with a graph with 32 parallel pipelines and eight serial stages running on a 32-core machine with hardware-based
simultaneous multithreading (64 virtual cores). Internal and external latencies represent, respectively, the specific software- and hardware-related
time lags that contribute to the round-trip latency (see table 1 for median latencies and 99% intervals). Contributions of detections triggered by
samples that arrived first and last in the 6-sample buffer used in the reader node are also shown as partial densities of the distribution of internal
latencies. Median values (with 99% intervals) were 0.19 ms (0.14–0.48) for last-in samples and 0.28 ms (0.24–0.49) for first-in samples.
(b) The lack of drift of the median of the distribution (black line) of the latency values (scattered gray dots) indicates the temporal stability of
the round-trip latency. Test lasted one hour and a 32 × 8 graph was used with 64 virtual cores. (c) and (d) sub-millisecond round-trip latencies
can be achieved also on a quad-core machine. In log-scale, the graphs show the box plots of the round-trip latencies obtained using 64 or eight
virtual cores (corresponding to 32 and 4 physical cores) for four different combinations of parallel pipelines and serial stages of the Falcon graph.
Outliers were determined as values lying 1.5 times the inter-quartile range below the first or above third quartile.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

11

only include software-related delays like the data streaming
between nodes and synchronization lags in aggregator nodes.

External data transfer contributed to the overall round-trip
latency slightly more than internal data transfer, with a
median value of 0.33 ms (99% interval: (0.28–0.39)) for the
external latency and a median value of 0.26 ms (99% interval:
(0.15–0.45)) for the internal latency (table 1, figure 7(a)). The
distribution of the internal latencies computed with only ‘last-
in’ samples, which were not affected by buffering-induced
latency on the reader node (see Methods), had a lower median
value of 0.19 ms (99% interval: (0.14–0.48)). These results
demonstrate the limited computational overhead added by
Falcon on our CPU hardware and highlight that Falcon can
be versatilely deployed in closed-loop experiments with strin-
gent latency requirements.

We next asked how the size of the graph impacted the
round-trip latency. In general, smaller graph sizes resulted
in lower median round-trip latencies and fewer measure-
ments that exceeded the 1-ms deadline (figure 7(c), table 1).
By reducing the number of parallel pipelines from 32 to 1,
the reduction in median latency was limited to ~5%, from
0.59 ms (99% interval: (0.44–0.78)) to 0.56 ms (99% interval:
(0.41–0.94))). The graphs with a single serial stage had the
lowest median latency (0.50 ms) and sub-millisecond worst-
case latency. Overall, these results show that the paralleliza-
tion control offered by Falcon was effective in reducing the
overall response latency.

We next asked whether CPU hardware was critical for
ensuring low round-trip and software latencies in simple and
larger graphs. For this, we measured round-trip latency on a
machine with a lower number of available CPU cores either
the 32-core machine with only four cores enabled or a sepa-
rate quad-core machine (in both cases a total of 8 virtual cores
was available). Again, for all graph sizes the median round-trip
latency was well below 1 ms (table 1). For the larger graph sizes
(32 × 1 and 32 × 8), the worst-case latency and the fraction
of missed deadlines were increased when compared to the test
with a fully enabled 32-core machine. When comparing the
quad-core machine to the 32-core machine, we found a reduced
median round-trip latency for the smaller graph sizes. This
reduction is most likely explained by the higher CPU clock rate
of the quad-core machine (3.60 GHz versus 2.30 GHz).

To test whether memory availability (rather than CPU)
could be a bottle-neck during latency tests, we checked the
system memory usage. Falcon’s memory usage was respec-
tively 120 MB, 27.5 MB and 12.8 MB during the executing
of a 32 × 8, 32 × 1 and 1 × 8 graph. These values are at least
one order of magnitude below the typical amount of memory
available on modern PCs. Although memory is not a concern
for running Falcon, the user must ensure that the memory
required by custom-made processors can be accommodated
by the available system memory.

Overall, these results highlight that the number of available
physical cores and system memory is not critical for ensuring

Table 1. Summary of latencies for different graph sizes obtained on two workstations, a 32-machine with either 64 or eight virtual cores
enabled and a quad-core machine with all eight virtual cores enabled, using either a Neuralynx or Open Ephys data acquisition system.
Latencies obtained with Open Ephys are about one order of magnitude higher than with Neuralynx mostly because of the ms-order USB
buffering.

Graph size

Round-trip latency Internal (software) latency External (hardware) latency

Median (ms)
(99% interval)

Worst-case
(ms)

‰ larger
than 1 ms

Median (ms)
(99% interval)

Worst-case
(ms)

Median (ms)
(99% interval)

Worst-case
(ms)

Neuralynx + 64 enabled virtual cores (32-core machine)

1 × 1 0.50 (0.37–0.66) 0.72 0.0 0.19 (0.07–0.34) 0.42 0.33 (0.28–0.39) 0.43

1 × 8 0.56 (0.41–0.94) 1.03 0.7 0.25 (0.09–0.63) 0.70 0.33 (0.28–0.39) 0.45

32 × 1 0.50 (0.34–0.66) 0.97 0.0 0.17 (0.06–0.34) 0.64 0.32 (0.27–0.39) 0.41

32 × 8 0.59 (0.44–0.78) 3.00 0.6 0.26 (0.15–0.45) 2.64 0.33 (0.28–0.39) 0.41

Neuralynx + 8 enabled virtual cores (quad-core machine)

1 × 1 0.41 (0.28–0.53) 0.56 0.0 0.11 (0.01–0.23) 0.26 0.31 (0.27–0.38) 0.40

1 × 8 0.44 (0.31–0.56) 0.72 0.0 0.13 (0.03–0.24) 0.36 0.32 (0.27–0.38) 0.39

32 × 1 0.44 (0.31–0.56) 1.31 0.1 0.13 (0.03–0.28) 1.03 0.31 (0.26–0.38) 0.39

32 × 8 0.59 (0.44–0.84) 13.81 0.9 0.26 (0.15–0.50) 13.47 0.32 (0.27–0.39) 0.44

Neuralynx + 8 virtual cores enabled (32-core machine)

1 × 1 0.50 (0.37–0.63) 2.47 0.0 0.17 (0.05–0.31) 2.13 0.33 (0.28–0.39) 0.41

1 × 8 0.50 (0.37–0.63) 0.75 0.0 0.18 (0.07–0.32) 0.41 0.33 (0.28–0.39) 0.41

32 × 1 0.50 (0.37–0.66) 12.09 0.6 0.17 (0.08–0.34) 11.66 0.32 (0.27–0.38) 0.40

32 × 8 0.66 (0.50–1.03) 29.41 6.6 0.30 (0.19–0.70) 29.05 0.32 (0.27–0.38) 0.39

Open Ephys + 64 enabled virtual cores (32-core machine)

1 × 1 9.22 (4.06–14.53) 14.84 n/a n/a n/a n/a n/a

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

12

low median round-trip latencies. Real-time behavior is, how-
ever, slightly affected (more missed deadlines) when the graph
size greatly exceeds the number of available cores and graphs
that incorporate heavy algorithms of neural processing are
going to be highly dependent on the number of physical cores
(see [21]). Nevertheless, Falcon’s well-controlled paralleliza-
tion can help reach the limits of the available CPU hardware
to achieve desired real-time capabilities.

Tests on Open Ephys hardware

To demonstrate the flexibility of Falcon in adapting to different
data acquisition systems, we implemented a node for reading
multi-channel neural data recorded with Open Ephys hard-
ware. For this system, the round-trip latency cannot meet the
1 ms deadline as it is limited by the use of USB for data transfer
and the internal 10 ms buffer size needed to prevent data loss
[30]. For the smallest 1 × 1 graph (processing 4 channels),
we measured a median round-trip latency of 9.22 ms (99%
interval: (4.06–14.53)) and a worst-case latency of 14.84 ms.

Closed-loop neuroscience applications

With the available detector nodes (figure 2), Falcon can be
used to trigger an output upon the occurrence of a single spike
(recorded on a single- or multi-electrode sensor), a transient
oscillation in the extracellular field potential (e.g. hippo-
campal ripples) and a population burst.

These detections can be accomplished with acceptably low
latencies and sufficient accuracy for closed-loop manipula-
tions. Using a SpikeDector node, single spikes on a tetrode
can be detected within 1 ms. With a RippleDetector node we
have been able to detect 150–250 Hz hippocampal ripple
oscillations with 30 ms average latency from the event start
(corresponding to less than 50% average latency relative to
total duration of the event) and 80% sensitivity. We have suc-
cessfully coupled the detection with electrical feedback stim-
ulation to disrupt ripple events and test their role in spatial
memory processing, replicating the experimental protocols
of previous closed-loop studies [5–7]. The RippleDetector
node implementation is generic and when configured with an
appropriate filter, it could also be used to detect other tran-
sient oscillatory patterns relevant in cognition, like spindles
(8–16 Hz), high-gamma bouts (50–125 Hz) and fast ripples
(250–500 Hz) [36, 37].

Since hippocampal ripple events are associated with
increased population activity, an alternative detection method
could rely on detection of bursts in multi-unit activity. To dem-
onstrate this approach, a graph for detection of bursts from
a population of neurons was constructed (figure 6). During
a test on live recordings from a rat implanted with an array
of tetrodes located in the CA1 hippocampal area (see exper-
imental methods), Falcon was able to detect population bursts
with low latency (figure 8(a)). The median burst detection
latency relative to the start of offline identified burst events
was 40.51 ms (figure 8(b)), while the median relative detec-
tion latency compared to offline identified burst duration was
42.63% (figure 8(c)).

To better understand the origin of the response latency,
we also measured the contribution of the added latency due
to the software latency, the external latency due to outgoing
transmission of the digital pulse and the computational time
involved in executing the algorithms. These added latencies
were computed as the difference between the timestamp of the
last sample needed to detect threshold crossing and the times-
tamp of the digital event received in Cheetah. Added latencies
had a median value of 0.37 ms (99% interval: (0.31–7.73); see
figure 8(d)), demonstrating that the largest contributing factor
to the burst detection latency was the algorithmic (e.g. time to
reach threshold) and not the computational latency.

The online burst detection algorithm was adapted for
real-time use and thus differed from the offline algorithm.
Nevertheless, there was a large agreement between the online
and offline detected bursts. A total of 1954 events were detected
both online and offline with 70.62% (1954/2767) of offline
bursts that were detected online and 72.42% (1954/2698) of
online bursts that were also detected offline. Most of the disa-
greement stems from differences in the time-varying thresh-
olds computed by the online and offline algorithms, which
results in mismatched detection of mainly low amplitude
bursts. A low fraction of bursts was detected twice online (6%
of all online detections, corresponding to 0.05 detections s−1).
These results illustrate how Falcon can be used to implement
common closed-loop experiments.

Online encoding–decoding framework

Falcon’s features make it well-suited for real-time decoding
of behavioral information (e.g. position of a freely moving
animal) at tens of milliseconds time scales from popula-
tion activity recorded on multi-electrode arrays [38, 39],
for example with the intent to manipulate specific hippo-
campal reactivation patterns [5–7]. In the future Falcon will
be extended with nodes that implement decoding algorithms
to support this application (figure 9). In the online decoding
scenario, spike detection and likelihood computations are per-
formed independently for each electrode (or tetrode) and par-
allelization can be used to reduce overall latency. For instance,
a recently developed decoding approach for unsorted spikes
[40, 41], takes less than 1 ms decoding time per spike and
could leverage Falcon’s parallelization ability for achieving
millisecond-scale latency when applied to the activity of
a large neuronal population recorded on tens of electrodes.
In this application, the flexibility of Falcon can be further
exploited to online update the encoding models based on new
incoming spike and behavioral data for a real-time adaptive
encoding–decoding solution (encoder node in figure 9) [40].

Discussion

Falcon is an open-source development platform for soft real-time
analysis of streaming neural and behavioral data during closed-
loop neuroscience experiments. The creation of Falcon was driven
by the need of a software tool that easily and flexibly implements
different closed-loop experiments and provides direct control
over the hardware resources of a multi-core computer.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

13

At its core, Falcon relies on a graph subsystem that man-
ages the execution of a fully configurable and highly cus-
tomizable processing graph. Communication between graph
nodes is supported through shared state values and streaming
data ports that handle arbitrary data types. Each processing
node (source, sink, filter, detector) is mapped to a single
thread of execution. The general problem of optimally map-
ping computations to available resources on multi-core CPUs
and scheduling when computations are best executed remains
a hard challenge. In Falcon, online feedback on fill levels of
ring buffers and timing of computations can assist the user
in manually tuning the graph topology and parameters to
optim ize performance.

In addition to its flexibility, a major strength of Falcon is
the very low overhead in the execution of a processing graph.
For a variety of graph sizes tested on both 32- and 4-core CPU
machines, the latency added by the software was less than
0.5 ms for the large majority of measurements with only occa-
sional missing of deadlines (as expected for any soft real-time
system). In fact, Falcon rarely missed deadlines (less than
1 in 1000 measurements) when the number of nodes in the
graph did not greatly exceed the number of available cores. As
such, Falcon is a capable software platform for running sub-
millisecond latency closed-loop neuroscience experiments.

Besides the software framework overhead, the overall
round-trip latency of a closed-loop system based on Falcon
also includes contributions from external data transmission

(both on the input and output side), data buffering, and the com-
putations performed in each processing node. By adjusting the
level of parallelization and concurrency through the number
of parallel pipelines and number of serial stages of the graph,
the experimenter can achieve lower real-time response laten-
cies for a given algorithm of interest. Reductions in response
latency are primarily obtained by dividing the computational
load over a number of parallel processing lines (‘independent
substream parallelization’, see [21]). Limitations due to input/
output (transmission latencies) and processing hardware capa-
bilities (number of CPU cores) must, however, be considered
and the user must also be careful not to over-parallelize the
processing graph. In fact, the CPUs cannot run in parallel more
threads than the number of virtual cores and an excessive level
of parallelization can even compromise performance over a
purely serial implementation.

Falcon round-trip latencies are comparable to if not
lower than other closed-loop systems. The sub-millisecond
round-trip latency that we measured on Neuralynx hardware
is lower than the ~4 ms lower bound of NeuroRighter [29].
Unfortunately, detailed round-trip and software latencies
for other open-source BCI tools in similar test conditions
(i.e. processing of >100 channels at high sampling rate) are
not available. When comparing our results to Open Ephys
software, Falcon seems to perform slightly better, with a
~2 ms lower median latency and ~5 ms lower maximum
latency [42].

Figure 8. Online detection of hippocampal population bursts in a freely moving rat with Falcon. (a) Top: Raster plot of 7 s of spiking
activity recorded by the multi-tetrode array implanted in CA1 during a rest session; each row represents all spikes on a tetrode. Note
the transient increases in firing across tetrodes. Bottom: Offline MUA activity (dark gray) of the CA1 population (computed using all
recorded spikes and detrended with a double exponential average filter) is displayed together with the online detections (black vertical
lines) generated by Falcon. Light-gray boxes indicate the offline-defined burst onset and offset times. Note the early detection of most of
the bursts. (b) Distribution of the online detection latencies from the time of burst onset. The black vertical line at 40.51 ms represents the
median of the distribution. (c) Distribution of the latencies of the online detections relative to the total duration of each burst. The black
line at 42.63% represents the median of the distribution. (d) Distribution of the added latencies of the online detections, following the last
sample needed to detect the burst. The black vertical line at 0.37 ms represents the median of the distribution.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

14

By design, Falcon is decoupled from specific hardware for
data acquisition and closed-loop feedback. We have success-
fully interfaced Falcon with Digilynx (Neuralynx) and Open
Ephys data acquisition systems. For Digilynx, the sample-
by-sample signal transmission over Gigabit Ethernet resulted
in a sub-millisecond round-trip latency. For Open Ephys,
round-trip latencies varied from 4 to 15 ms due to data trans-
mission over USB and internal buffering. Support for other
signal sources may be added by implementation of a new
reader node, provided the availability of Linux drivers and
libraries that interface to the hardware and/or documentation
that describes how to parse the incoming data stream. This
includes generic input modules for analog and digital signals,
and digital video/audio streams. For some commercial neural
data acquisition systems it may be difficult to obtain access to
the raw data stream and support from the manufacturer would
be required. In the future, Falcon could also be integrated with
preprocessing hardware like an FPGA or a DSP. For instance,

instead of reading the raw data stream, Falcon may directly
receive detected spike waveforms and provide closed-loop
feedback after processing the spike data.

On the output side, we interfaced Falcon with a USB dig-
ital output module and an Arduino microcontroller. Digital
output pulses can be used as triggers for external hardware,
such as stimulus generators. Closed-loop feedback through
microcontrollers can be used for controlling actuators and
other devices, for example servo motors that move doors or
robotic arms. In addition, through digital triggers and network
communication a Falcon-based system can interact with other
neuroscientific software applications that provide specialized
hardware interfaces, for example to present visual stimuli on
a screen, produce audio output or dispense food rewards (e.g.
Bonsai [43] and Psychopy [44]).

Because Falcon was primarily designed for flexible real-
time processing of streaming experimental data and not as a
general data acquisition and visualization software, it lacks an
integrated graphical user interface. To perform simultaneous
real-time processing of experimental data streams in Falcon
and data logging and/or visualization in a graphical user
interface, there are two options. As a first option, Falcon’s
client-server architecture can be harnessed to achieve cus-
tomized control and implement visualization applications
for dedicated processing graphs. Advantageously, such client
applications can be written in a programming language most
convenient for the user. We have written a simple reference
client in Python for control of Falcon and processor-specific
visualization clients for online adjustment of critical param-
eters (e.g. threshold for burst detection). Alternatively, Falcon
could tap into a duplicate data stream generated by the acqui-
sition hardware (as is the case for Neuralynx’ Digilynx) or by
an acquisition server (see [25]). In the latter case, the server
is the single point of interaction with the acquisition hardware
and serves data to multiple clients, including Falcon and a
visualization software.

To solve common closed-loop neuroscience tasks, at pre-
sent Falcon includes three types of detectors: a spike detector,
a ripple-like oscillation detector and a burst detector. In
particular, we demonstrated how Falcon can be deployed
for online detection of bursts in neural population activity
recorded in vivo. We detected bursts with approximately 40 ms
latency relative to offline determined onsets, with the largest
contrib ution to the latency stemming from the algorithm (time
to reach threshold) and not from computational and data
transfer time inside Falcon. However, the potential of Falcon
goes far beyond the simple experimental case of population
burst detection. We described a real-time encoding–decoding
scenario that leverages Falcon’s power and flexibility. Future
work will focus implementing the necessary processing nodes
to make this scenario reality. Given its versatility and low
round-trip latency against high-sampling high-count input
streams, Falcon can also be deployed for controlling EEG-
based BCIs and invasive brain–machine interfaces (BMIs)
[45] with latency demands in the order of tens to hundreds of
milliseconds.

Figure 9. Processing graph design for a hypothetical online
encoding–decoding scenario with the goal to detect target spike
patterns. The nodes inside the enclosure are duplicated for parallel
processing of multiple electrodes.

J. Neural Eng. 14 (2017) 045004

D Ciliberti and F Kloosterman

15

Finally, we foresee several additional lines of future devel-
opment. The first one relates to the use of graphical processing
unit (GPU) calls inside processor nodes [40], for further
boosting real-time capabilities [38, 39], especially on limited
CPU hardware. Secondly, Falcon could achieve better con-
trol over latencies, especially over the worst-case latencies,
by using a real-time OS rather than a standard OS (this could
of interest for applications of cellular electrophysiology, like
dynamic clamping). Finally, since all libraries used in Falcon
are cross-platform, with some effort Falcon could be ported to
Windows and thus operate on PCs in which other Windows-
specific software must be executed or installation of a dif-
ferent OS is not possible (e.g. clinical settings).

Conclusions

We presented Falcon, a novel tool for implementing a wide
variety of closed-loop neuroscientific experiments. Falcon
is a highly versatile open-source software capable of sub-
millisecond response latency over high-rate (e.g. 32 kHz)
streaming data acquired from high-count multi-electrode
arrays (e.g. 128 channels). Falcon offers a unique combina-
tion of features that distinguish it from existing open-source
software. In fact, it can not only be used to build arbitrary
processing graphs with existing nodes, but it can also use
new highly customizable data types and nodes; moreover, by
mapping each node directly onto one thread, it empowers the
user with direct control over CPU resources. Falcon can be
exploited for implementing closed-loop experiments requiring
computationally intensive neural algorithms and complex data
structures, like population encoding and decoding of firing
patterns from neuronal ensembles.

Acknowledgments

We are grateful to Cristian Inel for his important contrib ution
in the development of a predecessor software framework,
Frédéric Michon for his help with online burst detection in
vivo, Joana Serpa Santos for providing the datasets used for
testing online ripple detection and Nicolas Sist for his feed-
back on the installation and use of the software.

Conflict of interest

The authors declare no competing financial interests.

References

	 [1]	 Buzsáki G 2015 Hippocampal sharp wave-ripple: a cognitive
biomarker for episodic memory and planning Hippocampus
25 1073–188

	 [2]	 Potter S M, El Hady A and Fetz E E 2014 Closed-loop
neuroscience and neuroengineering Front. Neural Circuits
8 115

	 [3]	 Zrenner C, Belardinelli P, Müller-Dahlhaus F and Ziemann U
2016 Closed-loop neuroscience and non-invasive brain
stimulation: a tale of two loops Front. Cell. Neurosci. 10 92

	 [4]	 El Hady A 2016 Closed Loop Neuroscience (London:
Academic)

	 [5]	 Jadhav S P, Kemere C, German P W and Frank L M 2012
Awake hippocampal sharp-wave ripples support spatial
memory Science 336 1454–8

	 [6]	 Girardeau G, Benchenane K, Wiener S I, Buzsáki G and
Zugaro M B 2009 Selective suppression of hippocampal
ripples impairs spatial memory Nat. Neurosci. 12 1222–3

	 [7]	 Ego-Stengel V and Wilson M A 2010 Disruption of ripple-
associated hippocampal activity during rest impairs spatial
learning in the rat Hippocampus 20 1–10

	 [8]	 de Lavilléon G, Lacroix M M, Rondi-Reig L and
Benchenane K 2015 Explicit memory creation during sleep
demonstrates a causal role of place cells in navigation
Nat. Neurosci. 18 493–5

	 [9]	 Siegle J H and Wilson M A 2014 Enhancement of encoding
and retrieval functions through theta phase-specific
manipulation of hippocampus Elife 3 e03061

	[10]	 O’Connor D H, Hires S A, Guo Z V, Li N, Yu J, Sun Q-Q,
Huber D and Svoboda K 2013 Neural coding during
active somatosensation revealed using illusory touch
Nat. Neurosci. 16 958–65

	[11]	 Wright J, Macefield V G, van Schaik A and Tapson J C
2016 A Review of control strategies in closed-loop
neuroprosthetic systems Front. Neurosci. 10 312

	[12]	 Heck C N et al 2014 Two-year seizure reduction in adults
with medically intractable partial onset epilepsy treated
with responsive neurostimulation: final results of the RNS
System Pivotal trial Epilepsia 55 432–41

	[13]	 Little S et al 2013 Adaptive deep brain stimulation in
advanced Parkinson disease Ann. Neurol. 74 449–57

	[14]	 El Hady A, Varona P, Arroyo D, Rodríguez F B and
Nowotny T 2016 Online event detection requirements
in closed-loop neuroscience Closed Loop Neuroscience
(London: Academic) ch 6, pp 81–91

	[15]	 Rutishauser U, Kotowicz A and Laurent G 2013 A method
for closed-loop presentation of sensory stimuli conditional
on the internal brain-state of awake animals J. Neurosci.
Methods 215 139–55

	[16]	 van Gerven M et al 2009 The brain–computer interface cycle
J. Neural Eng. 6 041001

	[17]	 Ben-Ari M 2006 Principles of Concurrent and Distributed
Programming (Reading, MA: Addison-Wesley)

	[18]	 Kopetz H 2011 Real-Time Systems (Boston, MA: Springer)
	[19]	 Nguyen T K T, Navratilova Z, Cabral H, Wang L, Gielen G,

Battaglia F P and Bartic C 2014 Closed-loop optical neural
stimulation based on a 32-channel low-noise recording
system with online spike sorting J. Neural Eng. 11 046005

	[20]	 Liu J W S 2000 Real-Time Systems (Englewood Cliffs, NJ:
Prentice Hall)

	[21]	 Fischer J, Milekovic T, Schneider G and Mehring C 2014
Low-latency multi-threaded processing of neuronal signals
for brain-computer interfaces Front. Neuroeng. 7 1

	[22]	 Delorme A, Mullen T, Kothe C, Akalin Acar Z,
Bigdely-Shamlo N, Vankov A and Makeig S 2011 EEGLAB,
SIFT, NFT, BCILAB, and ERICA: new tools for advanced
EEG processing Comput. Intell. Neurosci. 2011 130714

	[23]	 Kothe C A and Makeig S 2013 BCILAB: a platform for brain–
computer interface development J. Neural Eng. 10 056014

	[24]	 Brunner C et al 2012 BCI software platforms Towards Practical
Brain-Computer Interfaces (Berlin: Springer) pp 303–31

	[25]	 Renard Y, Lotte F, Gibert G, Congedo M, Maby E,
Delannoy V, Bertrand O and Lécuyer A 2010 OpenViBE:
an open-source software platform to design, test, and use
brain–computer interfaces in real and virtual environments
Presence Teleoperators Virtual Environ. 19 35–53

	[26]	 Degenhart A D, Kelly J W, Ashmore R C, Collinger J L,
Tyler-Kabara E C, Weber D J and Wang W 2011 Craniux:
A LabVIEW-based modular software framework for

J. Neural Eng. 14 (2017) 045004

https://doi.org/10.1002/hipo.22488
https://doi.org/10.1002/hipo.22488
https://doi.org/10.1002/hipo.22488
https://doi.org/10.3389/fncir.2014.00115
https://doi.org/10.3389/fncir.2014.00115
https://doi.org/10.3389/fncel.2016.00092
https://doi.org/10.3389/fncel.2016.00092
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.1038/nn.2384
https://doi.org/10.1038/nn.2384
https://doi.org/10.1038/nn.2384
https://doi.org/10.1002/hipo.20707
https://doi.org/10.1002/hipo.20707
https://doi.org/10.1002/hipo.20707
https://doi.org/10.1038/nn.3970
https://doi.org/10.1038/nn.3970
https://doi.org/10.1038/nn.3970
https://doi.org/10.7554/eLife.03061
https://doi.org/10.7554/eLife.03061
https://doi.org/10.1038/nn.3419
https://doi.org/10.1038/nn.3419
https://doi.org/10.1038/nn.3419
https://doi.org/10.3389/fnins.2016.00312
https://doi.org/10.3389/fnins.2016.00312
https://doi.org/10.1111/epi.12534
https://doi.org/10.1111/epi.12534
https://doi.org/10.1111/epi.12534
https://doi.org/10.1002/ana.23951
https://doi.org/10.1002/ana.23951
https://doi.org/10.1002/ana.23951
https://doi.org/10.1016/b978-0-12-802452-2.00006-8
https://doi.org/10.1016/b978-0-12-802452-2.00006-8
https://doi.org/10.1016/j.jneumeth.2013.02.020
https://doi.org/10.1016/j.jneumeth.2013.02.020
https://doi.org/10.1016/j.jneumeth.2013.02.020
https://doi.org/10.1088/1741-2560/6/4/041001
https://doi.org/10.1088/1741-2560/6/4/041001
https://doi.org/10.1088/1741-2560/11/4/046005
https://doi.org/10.1088/1741-2560/11/4/046005
https://doi.org/10.3389/fneng.2014.00001
https://doi.org/10.3389/fneng.2014.00001
https://doi.org/10.1155/2011/130714
https://doi.org/10.1155/2011/130714
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1007/978-3-642-29746-5_16
https://doi.org/10.1007/978-3-642-29746-5_16
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1162/pres.19.1.35

D Ciliberti and F Kloosterman

16

brain-machine interface research Comput. Intell. Neurosci.
2011 363565

	[27]	 Biró I and Giugliano M 2015 A reconfigurable visual-
programming library for real-time closed-loop cellular
electrophysiology Front. Neuroinform. 9 17

	[28]	 Ortega F A, Butera R J, Christini D J, White J A and
Dorval A D 2014 Dynamic clamp in cardiac and neuronal
systems using RTXI Methods Mol. Biol. 1183 327–54

	[29]	 Newman J P, Zeller-Townson R, Fong M-F, Arcot Desai S,
Gross R E and Potter S M 2013 Closed-loop, multichannel
experimentation using the open-source neurorighter
electrophysiology platform Front. Neural Circuits 6 98

	[30]	 Siegle J H, Cuevas López A, Patel Y, Abramov K, Ohayon S
and Voigts J 2017 Open Ephys: an open-source, plugin-
based platform for multichannel electrophysiology
J. Neural Eng. 14 045003

	[31]	 Hintjens P 2013 ZeroMQ: Messaging for Many Applications
(Sebastopol, CA: O’Reilly Media)

	[32]	 Marr D T, Binns F, Hill D L, Hinton G, Koufaty D A,
Miller J A and Upton M 2002 Hyper-threading technology
architecture and microarchitecture Intel Technol. J. 6 1–12

	[33]	 Fried I, Cerf M and Kreiman G 2014 Data analysis techniques
for human microwire recordings: spike detection and
sorting, decoding, relation between neurons and local
field potentials Single Neuron Studies of the Human Brain
(Cambridge, MA: MIT Press) pp 59–98

	[34]	 Kloosterman F, Davidson T J, Gomperts S N, Layton S P,
Hale G, Nguyen D P and Wilson M A 2009 Micro-drive
array for chronic in vivo recording: drive fabrication J. Vis.
Exp. 26 e1094

	[35]	 Talakoub O, Gomez Palacio Schjetnan A, Valiante T A,
Popovic M R and Hoffman K L Closed-loop interruption of
hippocampal ripples through fornix stimulation in the non-
human primate Brain Stimul. 9 911–8

	[36]	 Kucewicz M T et al 2014 High frequency oscillations are
associated with cognitive processing in human recognition
memory Brain 137 2231–44

	[37]	 Averkin R G, Szemenyei V, Bordé S and Tamás G 2016 Identified
cellular correlates of neocortical ripple and high-gamma
oscillations during spindles of natural sleep Neuron 92 916–28

	[38]	 Davidson T J, Kloosterman F and Wilson M A 2009
Hippocampal replay of extended experience Neuron
63 497–507

	[39]	 Kloosterman F 2012 Analysis of hippocampal memory replay
using neural population decoding Neuronal Network
Analysis ed T Fellin and M Halassa (New York: Human
Press) pp 259–82

	[40]	 Kloosterman F, Layton S P, Chen Z and Wilson M A 2014
Bayesian decoding using unsorted spikes in the rat
hippocampus J. Neurophysiol. 111 217–27

	[41]	 Sodkomkham D, Ciliberti D, Wilson M A, Fukui K,
Moriyama K, Numao M and Kloosterman F 2016 Kernel
density compression for real-time Bayesian encoding/
decoding of unsorted hippocampal spikes Knowl.-Based
Syst. 94 1–12

	[42]	 Voigts J et al 2016 A open-source system and interface
standards for very high data rate neurophysiology and low
latency closed-loop experiments Program No. 848.13. 2016
Neuroscience Meeting Planner (San Diego, CA: Society for
Neuroscience) (online)

	[43]	 Lopes G et al 2015 Bonsai: an event-based framework for
processing and controlling data streams Front.
Neuroinform. 9 7

	[44]	 Peirce J W 2007 PsychoPy—psychophysics software in
python J. Neurosci. Methods 162 8–13

	[45]	 Lebedev M A and Nicolelis M A L 2006 Brain–machine
interfaces: past, present and future Trends Neurosci.
29 536–46

J. Neural Eng. 14 (2017) 045004

https://doi.org/10.1155/2011/363565
https://doi.org/10.1155/2011/363565
https://doi.org/10.3389/fninf.2015.00017
https://doi.org/10.3389/fninf.2015.00017
https://doi.org/10.1007/978-1-4939-1096-0_21
https://doi.org/10.1007/978-1-4939-1096-0_21
https://doi.org/10.1007/978-1-4939-1096-0_21
https://doi.org/10.3389/fncir.2012.00098
https://doi.org/10.3389/fncir.2012.00098
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.7551/mitpress/9780262027205.003.0006
https://doi.org/10.7551/mitpress/9780262027205.003.0006
https://doi.org/10.3791/1094
https://doi.org/10.3791/1094
https://doi.org/10.1016/j.brs.2016.07.010
https://doi.org/10.1016/j.brs.2016.07.010
https://doi.org/10.1016/j.brs.2016.07.010
https://doi.org/10.1093/brain/awu149
https://doi.org/10.1093/brain/awu149
https://doi.org/10.1093/brain/awu149
https://doi.org/10.1016/j.neuron.2016.09.032
https://doi.org/10.1016/j.neuron.2016.09.032
https://doi.org/10.1016/j.neuron.2016.09.032
https://doi.org/10.1016/j.neuron.2009.07.027
https://doi.org/10.1016/j.neuron.2009.07.027
https://doi.org/10.1016/j.neuron.2009.07.027
https://doi.org/10.1007/7657_2011_8
https://doi.org/10.1007/7657_2011_8
https://doi.org/10.1152/jn.01046.2012
https://doi.org/10.1152/jn.01046.2012
https://doi.org/10.1152/jn.01046.2012
https://doi.org/10.1016/j.knosys.2015.09.013
https://doi.org/10.1016/j.knosys.2015.09.013
https://doi.org/10.1016/j.knosys.2015.09.013
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.tins.2006.07.004
https://doi.org/10.1016/j.tins.2006.07.004
https://doi.org/10.1016/j.tins.2006.07.004

