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interactions
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The ability to catch prey is crucial for survival and reproduction and is subject to strong natural
selection across predators. Prey capture demands the orchestrated activation of multiple brain
regions and the interplay between sensory processing, decision-making, and motor execution. These
factors, together with the ubiquity of prey capture across species makes it appealing for comparative
studies across neuroscience and ecology. However, despite recent technological advances,
experimental approaches for studying natural behaviors such as prey catch are lagging behind. To
bridge this gap, we created PreyTouch—a novel approach for performing prey capture experiments
that incorporate flexible prey control, accurate monitoring of predator touchscreen strikes and
automated rewarding. Further, its real-time processing enables coupling predator movement and prey
dynamics for studying predator-prey interactions. Finally, PreyTouch is optimized for automated long-
term experiments featuring a web Ul for remote control and monitoring. We successfully validated
PreyTouch by conducting long-term prey capture experiments on the lizard Pogona vitticeps. This
revealed the existence of prey preferences, complex prey attack patterns, and fast learning of prey
dynamics. PreyTouch’s unique features and the importance of studying prey capture behavior make it
a valuable platform for connecting natural behavior with cognitive studies across various species and

disciplines.

The ability to successfully identify and capture moving prey is essential for
the survival, maturation, and reproduction in many animals. Capturing
prey demands substantial time and resources for its planning and successful
execution'. Consequently, it is a trait under intense selective pressure and
plays a pivotal role in shaping evolutionary trajectories’. Reflecting its
importance, prey capture was extensively studied across various disciplines
ranging from ecology to psychology” and over diverse species spanning
multiple animal classes*".

Prey capture, in its complexity, demands an orchestrated activation of
multiple brain regions™", showcasing the intricate interplay between sen-
sory processing’, decision-making™, and motor execution". To successfully
catch prey, animals need to first segment, identify, localize and sensorily
track the prey in space'’. Next, they need to decide whether to attack the prey
by weighting multiple available options while taking into account possible
risks in their surrounding environment™. Finally, they need to plan the
attack” and the strike, requiring the execution of appropriate and precise
motor commands’. Such multifaceted processing is bound to strongly
depend on (and drive the evolution of) multiple computations within brain

circuits. This, together with the abundance of prey catch behavior across
animal classes, makes prey capture a prime paradigm for comparative
studies, particularly in the context of the evolution of cognition and neural
computations™*'. However, to exploit the potential in prey catch investi-
gations, systematic behavioral experiments combined with -electro-
physiological measurements are needed.

In recent years, the field of animal behavior has undergone a sig-
nificant transformation with the integration of advanced technologies™™".
These technologies enable the collection and analysis of extensive datasets,
facilitating the exploration of new questions™ previously inaccessible in
classical prey capture studies”. A number of pioneering studies have
already begun to leverage these technologies to explore some aspects of
prey capture®*'"*"">. However, there remains a lack of open-source
platforms for facilitating generalized and automated prey capture
experiments, especially for freely moving animals. In particular,
one potentially promising technology that has yet to be adopted for
systematically studying prey capture in the lab is the use of
touchscreens™ .

'School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel. 2Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

e-mail: sheinmark@tauex.tau.ac.il

Communications Biology | (2024)7:1650


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-07345-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-07345-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-07345-5&domain=pdf
http://orcid.org/0000-0001-8132-2826
http://orcid.org/0000-0001-8132-2826
http://orcid.org/0000-0001-8132-2826
http://orcid.org/0000-0001-8132-2826
http://orcid.org/0000-0001-8132-2826
mailto:sheinmark@tauex.tau.ac.il
www.nature.com/commsbio

https://doi.org/10.1038/s42003-024-07345-5

Article

Cc
Prey Strike Automated
Application Analysis Reward
<[ |5 TA
‘4_ /N
®

& w
o ‘o

M?ealtime Feedback (RF) for incorporating predator-prey interactioy

Touch screen

Pose
Estimation

Camera
interface

f g h
o —T—| Web Ul - Synchronizing
= remote Control i External
& monitoring Devices

Fig. 1 | Components of the PreyTouch system. a Touchscreen prey application
allowing flexible animation of moving prey. b Animal strikes on the screen are
analyzed and sent in real time to the prey application and the reward module (c).
¢ An automated dispenser provides rewards (including live rewards) for pre-defined
touchscreen strikes. d A camera interface and spatial calibration module allows
recording and analyzing data from multiple synchronized behavioral cameras.

e Pose estimation and strike detection models are fed with images from the arena in
real time (or offline) and provide feedback to the prey application for enabling
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predator-prey interactions. f A web-based user interface allows scheduling auto-
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mated experiments as well as monitoring and manipulating experiments remotely.
g All arena components are synchronized internally and with external devices
through arduino TTL outputs. h Experimental information is logged in and dis-
played by offline modules for visualizing animal performance. i A scheme of the
experimental arena. The arena is built with off-the-shelf aluminum profiles. A
touchscreen is integrated in one of the walls in addition to cameras and a modified
automated feeder that are anchored to the top frame.

To bridge this gap, we present PreyTouch—a novel touchscreen-based
system for prey capture experiments. The system incorporates a touchsc-
reen application (Fig. 1a), for presenting naturalistic and artificial prey
dynamics. It supports real-time strike detection and analysis (Fig. 1b) as well
as routines for feeding this information back to alter prey movement
(Fig. 1a) and facilitate predator-prey interactions, or to automatically deliver
rewards (including live rewards) and reinforce specific choices (Fig. 1c).
PreyTouch incorporates comprehensive camera control and calibration
(Fig. 1d) enabling precise frame-by-frame real-time analysis using deep
models (Fig. 1e). PreyTouch includes a user-friendly web-based interface for
remote control, customization, scheduling and monitoring of experiments
(Fig. 1f) to support automated long-term experiments. PreyTouch ensures
high precision synchronization between the system’s components and with
external devices (e.g., electrophysiological recordings) (Fig. 1g). Finally, all
information collected by PreyTouch is logged and can be displayed with
viewers for tracking of animal performance (Fig. 1h). We validated the
system by successfully performing prey catch experiments in the lizard
Pogona vitticeps.

Results

PreyTouch features and performance

Performing prey catch experiments requires a repetitive time-consuming
effort. In order to streamline such experiments and scale up the number of
trials, we built a low-cost (“Methods”), automated arena (Fig. 1i, see section
“Methods” for details on the construction, operation, and features of the
arena) and wrote a dedicated software suite named PreyTouch. The system’s
simple and low-cost design allowed us to easily construct multiple arenas for
simultaneous recording of several animals for many consecutive days
during which prey catch sessions were periodically initiated. For controlling
the session times during these long experiments, we incorporated a dedi-
cated scheduling tool (“Methods”). Each session was composed of a series of
trials with a single prey item (Supplementary Fig. 1b) and a chosen prey
dynamics (Supplementary Fig. 1c) presented using the prey application
(Fig. 1a, “Methods”, and Supplementary Video 1). We designed the appli-
cation to provide animated and visually customizable stimuli mimicking live
prey (Supplementary Fig. 1a, b). Further, we integrated an interface to
PsychoPy to further expand the range of possible visual simulations
(“Methods”). We designed a GUI for configuring all experiment para-
meters, for example, the quantity or frequency of sessions, the prey types and
their movements, the rewards or the light/dark cycles (“Methods” and
Supplementary Fig. 4f). Finally, we added a system for automatically deli-
vering food rewards (including live prey™) upon successful performance

and an alert system for notifying the user in case rewards needed to be
replenished or upon system failures.

Measuring strike dynamics® can provide valuable information about the
animal’s prey-capture strategies. Additionally, monitoring the predator’s
location and posture throughout the experiment (before and after sessions)
allows placing prey catch within a wider behavioral context. For this reason, we
integrated into PreyTouch modules for video acquisition, calibration and
analysis (“Methods” and Fig. 1d). We added a GUI for multi-camera calibra-
tion (based on Churuko markers) that allows converting all videos to accurate
2D coordinates within the arena (Supplementary Fig. 2 and “Methods”). In
addition, we incorporated a video acquisition GUI allowing camera control
(Supplementary Fig. 4d). Finally, we implemented two pose estimation models
for extracting movement throughout experiments (Fig. 2a): Models for con-
tinuous real-time analysis (e.g, for triggering visual stimulation or external
devices like heaters or lights) and slower offline models for increasing classi-
fication accuracy (Fig. 2a, b and “Methods”).

We used these models to track the animal’s head position and direction
(Fig. 2a). During the task, this information is useful for tracking the strike
dynamics and its relation to prey motion. Figure 2d shows the strike
dynamics measured for the lizard P. vitticeps and the frog P. bedriagae.
While in both species, strikes were characterized by acceleration during
approach and deceleration before hitting the target, differences between
species were apparent (Fig. 2c). Examining head movement trajectories
revealed that lizards approached the screen also when sessions were not
active and no prey items were displayed (Fig. 2b). Integrating these move-
ments over longer time periods revealed a generally higher occupancy near
the screen suggesting that prey catch affected the lizard’s behaviors outside
the task (Fig. 2b).

Predator-prey interactions are often a bi-directional processes during
which both prey and predator modify their behavior in response to the
other’s actions. Facilitating such interactions under laboratory experimental
settings requires a closed loop system. We therefore incorporated an effi-
cient multiprocessing architecture for executing real-time visual models
designed for strike detection. We used this functionality to simulate prey
jumps in response to an attack by the predator’. One way to achieve this is to
identify the position of the animal (Fig. 2d—blue box) and move the prey
when the animal is proximal to the screen. However, such proximity does
not necessarily indicate a strike attempt. An alternative approach is to
identify a distinct pre-strike marker exhibited by the predator. For instance,
some predators, like P. vitticeps extend their tongues just before launching
an attack (Fig. 3a)"*. By training a model (“Methods”) to discriminate
between pre-strike lizard images with extended tongues (Fig. 3a) and images
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Fig. 2 | PreyTouch integrates pose estimation for measuring strike dynamics and
head and body movement. a Top view of a lizard after a strike on its way to receive a
reward. Head triangle (marked by red dots) is estimated using DeepLabCut and
enables tracking of head movement. Color dots depict the position of the jaw tip as a
function of time (color coded). b Long-term position tracking of a lizard in the arena.
(Left) Two trajectories (green and purple) acquired during two 30 min epochs.
(Right) The occupancy probability distribution (color coded) of the lizard’s position
accumulated over 167 h of recording during one month of experiment in one animal.
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The feeder and heat lamp locations are marked by red and blue lines, respectively.
¢ Strike dynamics of the animal’s jaw tip (pink dot in d) along the axis perpendicular
to the screen. The dots correspond to the time of frames in (d). d A series of
snapshots during prey strike for a lizard (P. vitticeps, top) and a frog (P. bedriagae,
bottom). Pink dots depict jaw tips (obtained using a pre-trained DeepLabCut model)
and blue rectangles depict a bounding box (obtained in real time using a

Yolo5 model).

with retracted tongues (Fig. 3b), we created a simple yet effective real-time
classifier for strike attempts. We achieved a low rate of false positives and
false negatives (Fig. 3c) as well as AUC (area under curve) close to 1
(Supplementary Fig. 3) when running the classifier on a test set.

We used this classifier for a feedback experiment in which a prey
moved along a horizontal trajectory on the screen (Supplementary Fig. 1c)
and jumped up every time the lizard attempted to strike it (Supplementary
Video 2). An example of the lizard’s approach towards the screen, followed
by two strike attempts is observed in Fig. 3d. PreyTouch successfully
responded with a prey jump before the lizard hit the screen, as evident from
the strike-triggered histogram of prey jump times which occurred ~200 ms
before strike time (Fig. 3e). To estimate the latency in closed-loop experi-
ments, we surrounded our processing pipeline (including image acquisition
and processing, tongue detection and visual feedback) between two exter-
nally measurable events: a trigger sent to turn on a LED in the arena and the
detection of visual stimulation on the arena touchscreen triggered by this
LED’s onset (“Methods”). The overall latency of our real-time feedback
procedure was 86.8 +£27.5ms (mean + s.d., Fig. 3f). This latency is well
below the delay between strike detection and the lizard’s strike time (Fig. 3e)
and is thus adequate for manipulating prey movement in real-time. The
sub-components of the measured delay are detailed in Fig. 3g.

Prey catch preference and learning in Pogona vitticeps

To demonstrate the performance of PreyTouch we performed a series of
prey catch experiments. We focused our analysis on two prey movement
patterns: linear horizontal movement and circular movement (Fig. 4a). We
first examined the engagement of the lizard with the artificial prey stimulus.
Following prey onset, lizards sharply moved their head towards the prey
(Fig. 4c) indicating prey perception. This movement was followed by a quick
approach towards the screen (Fig. 4c). Interestingly, the onset and offset of
prey movement were coupled with dramatic changes in local field potentials
and spiking activity recorded from the dorsal ventricular ridge (Supple-
mentary Fig. 5 and Supplementary Video 3), demonstrating the system’s
compatibility with electrophysiological recordings. To further quantify head
dynamics relative to the prey, we defined the prey deviation angle (®) as the

angle between the prey position on the screen and the head direction
(Fig. 4b; 0°—the head pointing directly at the prey; positive value—left eye
on the prey; negative value—right eye on the prey). Following previous
reports of gaze lateralization*"*’, we compared between sessions in which a
prey moved horizontally from right to left (and therefore appeared first with
higher probability on the right eye) and vice versa. We found similar
movement characteristics in both cases, with symmetric approach patterns
(Fig. 4c, d). While animals differed in the time it took them to turn their
heads towards the prey and approach it (Fig. 4e), we didn’t find any evidence
for consistent differences in head movement as a function of prey directions
which would have indicated visual lateralization. To verify this, we averaged
the deviation angles (®) during the first second following prey appearance in
each trial and tested if they significantly and consistently deviated from 0° to
a particular direction (®>0° indicating left-eye lateralization and <0°
indicating right-eye lateralization). We found that for two out of five tested
animals, © did not significantly (p < 0.05) differ from 0° (1-sample t-test;
t=—-2.33, p=0.21; t=5.73, p=0.06), and for others, the lateralization
patterns were not consistent towards a specific eye (l1-sample t-test;
t=—569, p<0.001; t=19.84, p < 0.001; t = 11.68, p = 0.02).

We next examined head dynamics during circular movement. In these
trials, the prey stayed on the screen for longer periods. We observed that the
lizards moved their head (quantified by the head angle, a, Fig. 4b) to follow
the prey for several cycles before striking (Fig. 4f). This movement resulted
in positive correlation values between the prey position and head movement
(Fig. 4g—top). Such correlations were consistent across animals (Fig. 4g—
bottom). Interestingly, although lizards observed and tracked the prey
during all phases of the prey’s circular motion, they only struck the prey
when it reached the bottom of the screen (prey rotation angle of
270° + 60°, Fig, 4h).

To study the lizard’s prey catch accuracy, we analyzed the positions of
strikes relative to the prey. Strike positions were registered on the screen in
real time and successful strikes (defined by falling within a predefined radius
surrounding the prey center; blue dots in Fig. 5a—top) were rewarded with a
live mealworm delivered by the automated feeder. The strike position was
asymmetric with respect to the prey direction of movement with most
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Fig. 3 | Real-time strike detection and visual feedback for bi-directional predator-
prey interactions. a, b Sample frames used to train a deep learning model to identify
the initiation of lizard strikes. The dataset included two categories: a frames cap-
turing a visible tongue just before a strike begins, and (b) frames without visible
tongues. ¢ Confusion matrix for the model’s performance on the test set showing a
very low number of false positives and false negatives. d Example of strike detection
and visual real time feedback during capture of a horizontally moving prey. Con-
comitant with the lizard’s approach (blue trace marking jaw tip position on the axis

perpendicular to the screen), the detection of tongue protrusions triggers prey jumps
(orange curve marking the movement of the prey) occurring just before the lizard
strikes the screen (dashed line). e A histogram of the strike detection times relative to
the screen strike time (¢ = 0). Blue line marks the kernel density estimation for the
distribution. The large majority of strike detections occur between 0 and 400 ms
prior to the strike. f The overall closed loop latency distribution (“Methods”) over
500 feedback events (mean + s.d. = 86.8 + 27.5 ms). g Breakdown of the overall
latency to software and hardware components.

strikes located in the rear part of the prey (Fig. 5a—top). This strike pattern
was consistent across lizards (Fig. 5a—bottom). Lizards managed to suc-
cessfully strike the prey in a large fraction of the strikes but success rates were
not homogenous across prey movement types (Fig. 5b). Lizards were more
successful in striking horizontally moving prey and less successful in striking
circularly moving prey (Fig. 5b) indicating a difference in task difficulty.
To understand if strike performance could be improved, we examined
the miss distance (Euclidean distance between the strike position and the prey
position) for each registered strike and tracked it over time. We found that
lizards significantly decreased their miss distance as virtual-hunting pro-
gressed (Fig. 5¢) as quantified by negative correlations of the miss distance over
consecutive strikes. This decrease in miss distance was apparent also when
inspecting individual animals separately (Supplementary Fig. 6a). However,
the rate of decrease differed across animals, with some showing steps in their
improvement along the experiment. Since some trials contained more than
one strike, we averaged the miss distance over trials, revealing a similar trend of
improvement in catching the circularly moving prey (Supplementary Fig. 6b).

Surprisingly, we did not find a significant improvement in the miss distance
during horizontal movement trials across animals (n=5 animals; r=
correlation coefficient; r=—0.16, p=0.16; r=—0.33, p=0.026; r=—0.14,
p=0.195;r=—0.18, p=0.094; r = —0.06; p = 0.591).

Finally, we examined if lizards had a preference for specific prey items.
To do so, we presented prey items differing in shape and color (Fig. 5d). To
quantify relative preference of different items we calculated the number of
strike attempts per trial and normalized over prey items. We found that the
preferred prey item across animals was the mealworm and the second
most preferred item was the cockroach (Fig. 5d). Interestingly, this choice
corresponded to the live feed lizards received in their regular diet. Meal-
worms (T. molitor or small Z. morio) were provided both in the home cage
(located in the animal house where lizards were kept before the experiment)
and as a reward during the experiment, and cockroaches (N. cinerea) were
provided in the home cage. This suggests that lizards can differentiate
between prey items and associate between live prey and prey presented on
the screen.
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Fig. 4 | Lizards exhibit prey following. a Dynamics of the prey’s horizontal position
on the screen in horizontal (blue line) and circular (orange line) movement types.
b A schematic illustration of a lizard during prey catch. Head position is marked by a
triangle (shaded gray) whose direction (a) is determined by three head points (red
dots, see also Fig. 2a). The prey is marked by a blue dot. ® (prey deviation angle)
marks the angle between the head direction (black dotted line) and prey direction
(black solid line). ¢ Head and prey dynamics. Head position (triangles), prey position
(filled dots), head direction (dashed color lines), and head-to-prey direction (solid
lines) for single frames (every 20th frame is shown) color coded for time (¢ = 0 prey
appearance) during a single trial of prey catch. Two trials with prey movement to the
left (left) and to the right (right) are shown. Note change in head direction following
the appearance of the prey on the screen and the consequent movement towards it.
d The deviation angle (®) dynamics for the trials in (c). Same color code as in (c).
e Average deviation angle (®) dynamics after prey appearance (¢ = 0) for trials with
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prey moving horizontally from right to left (red) and from left to right (green).
Lizards (n = 5) converge towards binocular gaze on the prey (® = ~0°) within a few
seconds of prey onset. f Head angle, o (red line), and prey’s horizontal position (blue
line) as a function of time in circular trials. Black vertical-dotted lines indicate strike
attempts. Notice locking of the head to prey motion. g Distributions of correlation
values between the head angle and the prey’s horizontal position (as in f) during
circularly moving prey trials in one animal (top) and all animals (bottom; n = 5). Box
plots indicating the 25th-75th percentile (middle line marks the median). Whiskers
indicate the Oth and 100th percentile and outliers are marked as gray dots.

h Distribution of prey position (angles on the circle) at strike times during circular
movement sessions for one animal (blue). The average strike angle in different
animals is marked by arrows. Plots (g, h) show statistics from 5 lizards with con-
sistent color-coded identity.
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Fig. 5 | Prey learning and prey preferences during prey catch. a-Top Scatter plot of
screen strikes recorded from a single lizard (cockroach prey). Misses (miss dis-
tance > prey body radius, 1.85 cm; n = 316; red) and successful rewarded hits

(n = 129; blue) are shown. a-Bottom Strike hit statistics during circular movement
trials for five lizards (box plots as in Fig. 4g). b Percentage of successful strikes for
horizontal and circular movement trials across animals. Notice higher success rates
for horizontal movement. ¢ Dynamics of miss distance for consecutive strikes in
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circular trials for all animals. Improvement in the task is quantified by significant
negative correlation (legend) (r correlation coefficient, p regression model p-value;
r=-—0.58, p<0.001; r=—0.81, p<0.001; r=—0.7, p < 0.001; r= —0.72, p < 0.001;
r=-0.28, p = 0.182). d Normalized (across prey types) prey choice probabilities
(fraction of strikes per number of presented trials) for different lizards. Black line
marks the mean value over animals. Plots (a—d) show statistics from five lizards with
consistent color coded identity (as in Fig. 4g, h).

Discussion
In this manuscript we introduce a novel experimental toolkit for conducting
prey capture experiments using a touchscreen. PreyTouch is constructed
from off-the-shelf low-cost components, increasing its accessibility to a
variety of laboratories. The open-source nature of PreyTouch and its inte-
gration with PsychoPy empowers experimenters with easy customization
for adapting the system according to specific requirements and preferred
species. These properties together with its real-time processing, the long
experiments scheduler and its compatibility with electrophysiological
recordings (Supplementary Fig. 5) make PreyTouch a valuable tool for
comparative studies across species.

PreyTouch was built for studying animal models capable of catching
prey by touching a screen with their tongue (e.g, many reptiles” and

amphibians™ as well as birds******). However, PreyTouch can be potentially

utilized across a much wider range of species exhibiting prey catching
behaviors. Mammals were shown to interact with touchscreens™*** and
can be trained to catch moving targets on a screen®. Our touchscreen-based
prey catch approach diverges from previous research utilizing live prey'>*"*’.
The main advantage of using live prey is its realistic appearance which more
likely elicits natural predator-prey interactions. Additionally, in the wild,
prey capture dynamics mirror the animal’s ecology and are not shaped by
the incentivized learning in lab settings. However, these advantages come at
the price of limited control. For example, trial to trial variability in live prey
movements may change the animal’s capture strategies thus limiting
reproducibility. Further, it is difficult to accurately manipulate a live prey’s
appearance, position and dynamics. This ability to pre-determine prey
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parameters is important for using prey catch paradigms to systematically
study sensory processing and movement-dependent neural computations”.
Finally, when using live prey, the number of prey catch trials is limited by the
satiation of the animal. An alternative to live prey is the usage of robots
mimicking prey items'*”’. However, such robots require substantial design
efforts, complex arenas and are hard to generalize to different species.

In contrast to using live prey or robots, PreyTouch allows full control
over prey properties and easy placement of prey backgrounds and visual
context (Fig. 1 and Supplementary Fig. 1), thus offering a good tradeoff
between realism and control. In addition, the low latency real-time feedback
integrated in PreyTouch exemplifies how prey-predator interactions can be
integrated in experimental designs (Fig. 3). Finally, the integration of the
animal’s pose (extracted from recorded video) with the touchscreen strike
logs offers an accurate quantification of the fine structure of animal
movements and choices* (Figs. 2,4,and 5). To the best of our knowledge, no
other system offers these features for prey catch experiments. Importantly,
the above benefits in prey control are valuable as long as animals are
motivated to try and catch virtual prey on the screen. In addition, both the
pose estimation model and the strike detection model were trained to
maximize performance for P. vitticeps, and should be retrained to adapt to
other species or strike profiles (“Methods”).

PreyTouch provides opportunities for performing long-term auto-
mated experiments. Behavioral experiments with reptiles tend to last longer
and require more repetitions, possibly due to their slower metabolism which
diminishes the effectiveness of food as a motivator, lower curiosity or
diminished play behavior relative to mammals and birds*~*'. Following
previous success with automated approaches”, we addressed these caveats
by integrating the PreyTouch scheduler agent allowing automatic
and remote monitoring of animal progress as well as optimizing experiment
schedules. This strategy enabled the collection of large prey catch
datasets with minimal effort while animals remain engaged for prolonged
periods of time (Fig. 4). Further, the low-cost and simple design allows
replicating the experimental setup thus further increasing experimental
throughput.

The experiments we performed exemplify how PreyTouch can offer
new opportunities for studying animal cognition. Specifically, it enables
providing insight on animal learning (Fig. 5¢), decision making (Fig. 5d),
motor behavior (Figs. 2¢, 4f, g, and 5a), lateralization (Fig. 4e), spatial
behavior (Figs. 2b, and 4c, d), and visual perception (Fig. 5d). For many
years, reptiles were considered to be slow, adamant, and with limited
learning capacity due to their underperformance in cognitive tasks™. Using
PreyTouch, we observed significant and fast learning during circular prey-
catching trials (Fig. 5¢). This result is consistent with the idea that achieving
fast learning in reptiles strongly depends on task design'**" highlighting the
advantages of the prey catch paradigm. In contrast to the improvement with
the circular prey, no learning was observed in horizontal movement trials.
This may be due to the lower difficulty of this task, as supported by the
higher success rates we measured for catching horizontally moving prey
(Fig. 5b). This lower difficulty may have decreased the lizard’s motivation to
change strategy and improve™.

We also observed that lizards can discriminate between different types
of prey, in line with reports of their complex visual processing abilities™* .
Interestingly, we found that they preferred prey found in their regular diet
(Fig. 5d). The ability to discriminate between prey on a screen suggests that
PreyTouch can be used for studying visual perception and decision making.
For example, we can ask to which degree can lizards associate specific prey
items or movement types with rewards. Lizards also performed strikes on
novel prey that they did not encounter before (Fig. 5d) implying that lizards
can balance between novel and familiar prey choices. Such a property can be
important if diversifying prey appearance is required in the experimental
design. Further, our experiments revealed that lizards continue to strike prey
on the screen despite receiving the reward in a different location on the
opposite side of the arena (Figs. 2b and 5). This suggests that they can
associate between the strikes and the rewards which open the door to per-
forming visual discrimination experiments with differential rewarding. This

association may have been the reason for the consistently robust prey catch
behavior that allowed collecting many trials (Fig. 5).

PreyTouch can be used for studying motor behavior during prey catch.
The large number of strikes we acquired and the pose estimation algorithms
we used allow calculating strike profiles (Fig. 2¢, d). Such analysis can be
used to compare strike strategies across species and to study if different prey
items or dynamics lead to different strike trajectories. Additionally, spatial
analysis of approach trajectories and head movement patterns during prey
catch can deepen our understanding of spatial cognition (Fig. 2b) and to link
perception with motor behavior (Fig. 4c—e). For example, a report based on
manually annotating the visual hemifield of the prey during lizard prey
catch'' indicated that the right eye mediates predatory activities. When
automatically examining head movements and quantitatively calculating
the prey’s hemifield (® sign, Fig. 4b) over multiple trials and animals, we
found no consistent lateralization (Fig. 4e). The robust quantification pro-
vided by PreyTouch allows a rich and accurate characterization of later-
alization behavior and opens the door to robust comparative studies of
lateralization across species.

Tracking head movements and strike choices allowed revealing prey
catch strategies. While catching circularly moving prey, lizards continuously
followed the prey with their heads (Fig. 4f, g). Interestingly, despite this con-
tinuous following, lizards stroke mostly at a specifically strategic point (the
lower part of the screen) (Fig. 4h). Thus, lizards mostly refrained from trying to
attack prey at points where it was harder to reach. Such a strategy hints that
lizards possess an “understanding” of their prey’s dynamics and may thus
possess predictive behaviors”. Our system enables systematic examination of
such behaviors by manipulating prey movement statistics. By measuring strike
dynamics and performance one can ask if lizards can learn prey movement
profiles and use them for predicting future prey position and for modifying
their strikes accordingly. Specifically, one could ask if lizards use information
about perceived prey velocity to modify their strike speed accordingly'. Using
PreyTouch, such questions could be investigated across animal classes
(Fig. 2d). The flexibility in monitoring and manipulating prey-catch experi-
ments, combined with the ubiquity of prey catching behavior, makes Prey-
Touch a valuable platform for comparative studies of animal cognition across
species, offering valuable insights into brain evolution® .

Methods

Hardware

The experimental arena was constructed from off-the-shelf low-cost com-
ponents (Fig. 1i and Table 1). These components include an arena cage, a
touchscreen, cameras, a server, and arena peripherals and are described in
detail below.

Arena Cage. The arena is built from a frame of connected aluminum
profiles with dimensions of 70 x 100 x 45 cm (W x L x H) (Fig. 1i). Arena
walls and floor were made from 3 mm thick aluminum composite
panels™. The choice of conductive wall is optimized for experiments with
electrophysiological measurement requiring a Faraday cage.

Touchscreen. A touchscreen (Dell P2418HT; 53 x 30 cm, 24”; Hor-
izontal frequency: 30-83 Hz, Vertical frequency: 50-76 Hz. Resolution:
1920 x 1080, refresh rate: 60 Hz.) was integrated into one of the arena
walls, and cameras as well as a modified and automated worm feeder were
anchored to the arena top rail (Fig. 1i). For experiments combining
electrophysiology we used a low noise touchscreen (ELO Touch Solutions
AccuTouch 1790 L 17 LCD open frame) that did not induce 50 Hz
artifacts when animals got close to the screen.

Cameras. Two sets of cameras were used with PreyTouch and are fully
supported by the system: (1) FLIR-Firefly FFY-U3-16S2M-DL + Black-
fly S BFS-U3-1652C, (2) Allied-Vision-1800 U-158c + 1800 U-158m.
Cameras were anchored to the arena’s top aluminum profiles using
adjustable arms (Noga Engineering & Technology, LC6100) and a cus-
tom 3D-printed connector. Video was recorded at a frame rate of 60 hz.
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Table 1 | List of arena hardware components and prices

Component Description Price per
unit (USD)
Arena frame Aluminum profile $12/m
Arena frame connectors Nuts, bolts, washers, and angle brackets $0.5
Arena walls and floor 2 x Alucobond sheet (122 x 244 cm gray matte) cut to 5 parts to fit arena walls $98
Front and top camera 2 x Firefly FFY-U3-16S2M-DL $598
Front and top camera lens Boowon 6”-BW60BLF $17
Back camera (color) FLIR Blackfly-BFS-U3-16S2C-CS $364
Back camera lens Computar A4Z2812CS-MPIR, 2.8-10 mm 1/2.7”, CS mount lens $109
Camera holder NOGA Modular holders LC6100 $124
Arena computer Intel Core i7-11700K CPU, 32GB DDR4 memory, NVIDIA GEFORCE RTX 3080 Ti GPU, 500GB SAMSUNG ~ $3,245
980 M.2 NVME SSD, and a 2TB 7200 RPM HDD
Arduino microcontrollers Arduino Nano Every $20
Relay board (lights and heat lamps)  Pololu Basic SPDT Relay Carrier with 5VDC Relay (Assembled)-Omron G5LE-14-DC5 SPDT $9
Reward feeder EVNICE EV200GW fish feeder $51
LED Strip 4 meter, 12 V Cold-White approx. 1 A/meter $20
Lamp holder MULTICOMP G6-R32HKY-12 lamp holder $3
Temperature sensor Plastic casing water-proof DS18B20 temperature sensor $22
Feeder motor driver ULN2003 stepper motor driver board $4
Led strip PSU 12V 5 A AC-DC power supply $13
Feeder PSU 5V 500 mA AC-DC power supply $5
Touchscreen Dell P2418HT; 53 x 30 cm, 24”; horizontal frequency: 30-83 Hz, vertical frequency: 50-76 Hz. Resolution: $581
1920 x 1080, refresh rate: 60 Hz
sum $5331

Server. PreyTouch was installed on a linux desktop computer (ubuntu
22.04) with the following specs: CPU: Intel Core i7-11700K, memory:
32GB DDR4, GPU Nvidia GeForce RTX 3080Ti (nvidia-driver:
530.30.02, cuda: 11.7), storage disks: 500GB SAMSUNG 980 M.2 NVME
SSD + 2TB 7200 RPM HDD.

Arena peripherals. All peripheral devices, including the reward dis-
penser, LED lights, temperature sensors, and camera triggers, are inter-
faced using an Arduino (Nano Every). The complete code for both the
Arduino and the service facilitating communication through MQTT
were sourced from the ReptiLearn project”.

Lights. The arena was lit using an LED strip (12 V, 6500 K white LEDs,
~3.4 mlong) that was attached using adhesive to profiles at the top edge of
the four arena walls. This provided relatively uniform lighting across the
arena, minimizing shadows. The strip was controlled using a relay
module (based on an Omron G5LE-14-DC5 5VDC SPDT relay). The
module’s EN, VDD, and GND control ports were connected to one of the
Arduino boards that sent on/off TTLs to control the DC output con-
nected to the LED strip’s power supply unit (12V, 5 A).

Live prey dispenser. For rewarding animals with live prey, we utilized a
readily available aquarium feeder (EVNICE EV200GW), which was
attached to the arena’s structure using its built-in clamp. The feeder was
modified to decrease its response time and driven by an Arduino board™.
Feeders were stocked with worms, each housed in individual compart-
ments (15 in total) with sufficient food for gut-loading. To ensure the
animals remained eager for the rewards, smaller worms proved more
effective, leading us to choose Tenebrio molitor larvae. In instances
requiring a larger worm supply between refills, we optimized space by
vertically arranging the feeders, achieving capacities of up to 45 worms in
three vertically aligned feeders. Feeders stacked vertically were positioned
such that the upper feeder dispensed rewards through the release aper-
ture of the feeder below it. The experimental module kept track of the

reward inventory in each feeder to determine which unit should release a
reward next.

Temperature sensors. We employed two DS18B20 digital temperature
sensors, each encased in plastic, to monitor the temperature within the
arena. The first sensor was affixed to the arena’s rear wall to gauge ambient
temperatures, while the second was positioned at the base of the wall
opposite, directly beneath the heat lamp in the basking area. These sensors
were linked to an Arduino board for data collection and 5 V supply.

Electrophysiology

Recording system. Recordings were performed with an Open EPyhs
acquisition system (acquisition board v2.2) and Intan amplifier head
stages (RHD2132-#C3314) connected using an ultra-thin SPI cable
(RHD2000-#C3216). The Open EPhys GUI*, was used for recording.
Electrode recordings were referenced to an implanted chlorinated silver
wire (a-m systems, cat-786000). During the recording, the weight of the
Intan head stage was balanced using a pulley system.

Surgery. Twenty-four hours before surgery, analgesics (Meloxicam:
0.2 mg/kg or Carprofen 2 mg/kg) and antibiotics (Baytril: 5 mg/kg) were
administered. On the day of the surgery, the animal was initially anes-
thetized with inhalation of Isoflurane in an induction box and later
intubated and connected to a ventilation system (AWS 100, Hallowell
EMC) maintaining a constant flow of 4% Isoflurane. Once deep anes-
thesia was verified, the lizards were placed in a stereotactic apparatus
(RWD 68409). Body temperature was maintained via a heating pad
attached to the stereotactic table at 35 °C. Eyes were protected by covering
with ointment (Doratears). The skin covering the skull was disinfected
with Povidone Iodine 10% and coated with a Lidocaine ointment (2%) for
local analgesia. The skin on the skull was removed with a scalpel and
residual tissue was removed with a micro curette and dissolved with 30%
hydrogen peroxide. A small craniotomy was drilled and the dura and
arachnoid layers covering the forebrain were removed with fine forceps,
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and the pia was gently opened over the area of electrode insertion. A small
incision in the brain was made with a 22 G needle lowered with a needle
holder stereotaxic arm. A 32-channel flexible (4 um thick) polyamide
probe with TiN electrodes (custom fabricated by NMI, Germany) was
inserted in the same location using a guide needle with manual adjust-
ment. To target the DVR, the probe was lowered to a depth of 1.5 mm
below the cortical surface. The brain was then covered with Dora-gel
(Cambridge neurotech). The remaining exposed skull was covered with
UV glue (Transbond™ XT 3 M) and dental cement (Coral Fix) to secure
the electrode and reference wire. Four holes were drilled contralaterally to
the craniotomy and used for the placement of anchoring screws. The
lizard was then removed from the stereotaxic table to a recovery box
where it remained ventilated with Oxygen until it self-extubated. Fol-
lowing the surgery, the lizard received a daily dose (injected sub-
cutaneously) of analgesics (Meloxicam: 0.2 mg/kg SC), antibiotics
(Baytril: 5 mg/kg SC), and 1 ml of Saline for 5 days. Recordings began
after the lizard resumed normal behavior.

Software

PreyTouch software. The majority of the PreyTouch codebase was
developed and tested using Python 3.8. To enable concurrent processing
with multiple cameras, the system employs a multiprocessing archi-
tecture with a Redis store. The software leverages Flask API (v2.2.2) for
execution and hosts a user-friendly management web interface (Sup-
plementary Fig. 4) created using jQuery (v1.11.0). PreyTouch is com-
patible with touchscreens and has the capability to exert full control over
them, facilitating the display of the prey application (as detailed in the
subsequent section), and monitoring and logging screen touches. Com-
munication within the system, such as interactions between camera
processes, the API, the prey application, and peripheral components, is
established through the MQTT messaging protocol. For instance, com-
mands are transmitted to operate the feeder dispenser (reward) or to
receive instructions from the server (e.g., initiation of prey trials or other
events like prey jumps). Via the MQTT protocol, the application sys-
tematically communicates a comprehensive log of all behavioral events,
encompassing screen touches and prey trajectories.

Prey application. A prey application (Fig. 1a) was designed to provide
realistic visual stimuli mimicking live prey. To achieve this, each prey
item was constructed of a sequence of still images that were repeatedly
displayed to create animation (Supplementary Fig. 1a) in addition to an
image displayed following a successful hit (Supplementary Fig. 1a—left).
Prey items can be selected from an existing repertoire (Supplementary
Fig. 1b) or provided as input for seamless customization of new prey
items. In addition to the appearance of prey, its dynamics is also con-
figurable. Movement profiles can be selected from a range of imple-
mented profiles (Supplementary Fig. 1c) or customized by providing the
(x, y) trajectory. In addition, the application allows determining para-
meters such as movement duration, velocity or prey size. Finally, static
objects (e.g., walls, obstacles) can be added if necessary (Supplementary
Fig. 1c). The prey application receives input from the touchscreen and
responds to animal strikes accordingly (Supplementary Fig. 1a). The Prey
application is written in Vue.js, a JavaScript framework that is well-suited
for web-based (browser independent) animation with asynchronous
events required for fast responsiveness. In addition, the application is
based on MQTT messaging, allowing it to efficiently communicate with
devices. This design scheme allows fast updating of prey appearance
following a successful strike, sending commands to operate the reward
dispenser or receiving commands from the server. The MQTT protocol is
also used to send a full log of all behavioral events, such as screen touches
and prey trajectories.

Logging and databases. The system performs logging (Fig. 1h) through
two mechanisms: storing data in local files and a designated database.
PreyTouch utilizes PostgreSQL as its chosen database, with

communication facilitated through SQLAlchemy (v1.4.39). Additionally,
the system incorporates a migration method to the database using
Alembic (v1.8.1). Various data types are consistently saved to both the
database and local files: (1) videos from the arena (actual videos are saved
locally, while frame times are saved to both local files and DB), (2) screen
touches, (3) prey trajectories on the screen, (4) experiment timings and
configuration, (5) temperature in the arena, (6) off-line analysis, (7)
rewards. For more information on the structure of the database please
refer to Supplementary Fig. 7.

Detection models. Monitoring predator dynamics throughout the experi-
ment is important for gaining a comprehensive understanding of prey catch
behavior. For this reason, we integrated into PreyTouch modules for auto-
mated video acquisition from multiple cameras (Fig. 1d), in addition to pose
estimation models for extracting movement information (e.g,, DeepLabCut™).
These models can operate in two modes: (1) In real-time mode, video frames
are continuously analyzed for activity based triggering of visual stimulation or
external devices like heaters or lights. (2) In offline mode, deeper and slower
models are utilized (when the system is not actively running experiments) for
increasing classification accuracy. Support is already integrated for a range of
models, including DeepLabCut, YOLO, and any models based on the PyTorch
framework. For instructions on how to train these models for other species or
pre-strike behaviors, please visit the corresponding github page.

Tongue model—real-time strike detection. The tongue detection
model employs ResNet18 as the backbone to embed input images from
224 x 224 x 3 parameters to 512 parameters. The model, developed in
PyTorch (v2.0.1), was designed as follows:

(resnet): resnet18(in_features = 150528, out_features = 512)

(fcl): Linear(in_features = 512, out_features = 120, bias = True)

(fc2): Linear(in_features = 120, out_features = 60, bias = True)

(fc3): Linear(in_features = 60, out_features = 2, bias = True)

(dropout): Dropout(p = 0.2, inplace = False)

(norm): BatchNorm1d(512, eps = 1e-05, momentum = 0.1, affine=

True, track_running_stats = True)

Scheduler and Agent. In order to streamline experiments and scale up
the number of trials, we incorporated a scheduling tool in PreyTouch.
This tool allows performing automated experiments without user
intervention. Before the beginning of the experiment, the arena is con-
figured and parameters such as the quantity, frequency, types of prey-
catching experiments, rewards and the light/dark cycles, are set. After
configuration, animals can be placed in the system for extended periods
of days, thus, allowing the system to accumulate valuable prey catch data.
The only required human intervention is filling up the reward dispensers.
Further, the system tracks the feeders’ status and sends an alert to the
experimenter in case the rewards run out. Alerts are also automatically
sent in case of system failures. The scheduler, implemented as a Python
module, initializes with the system, conducts checks, and executes
scheduled tasks at their designated times. Examples of checks performed
by the scheduler include monitoring the state of arena lights, initiating or
concluding camera acquisition, commencing scheduled experiments,
executing offline analysis, managing database migrations, and com-
pressing videos. Configuration adjustments for the scheduler can be
executed either through its module (scheduler.py) or via the configura-
tion file. For detailed information on scheduler configuration, please
consult the GitHub page. On the other hand, the agent, guided by a plan
outlined in agent_config.json, autonomously launches experiments. It
actively monitors the animal’s state and performance, adjusting experi-
ments accordingly. For guidance on configuring the agent, refer to the
GitHub link.

Camera calibration and real-world coordinates. PreyTouch integrates
a toolbox for easy camera undistortion (based on checkerboard detec-
tion) and for converting pose estimation results to 2D coordinates within
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the arena (Using ChArUco markers). This tool is based on the openCV
package for computer vision and its integrated camera calibration
functions. The first step of the calibration process is undistortion and it
requires a printed checkerboard (size: 9x6 square corners) that is cap-
tured by the camera in various orientations within the arena. The board is
detected using the openCV findChessboardCorners function. The
detected corners of the chess board are then fed to the calibrateCamera
function which provides the undistort-homography-matrix (see Sup-
plementary Fig. 2 for the result of applying the undistort-homography-
matrix on a frame). The resulting undistort-homography matrix is saved
by date and camera name, facilitating subsequent offline analyzes of
frame data. PreyTouch offers a method for extracting real-world coor-
dinates by converting frame detections from pixels to centimeters within
a predefined coordinate system in the arena. To achieve this, users are
instructed to print a ChArUco board matching the arena’s dimensions
and place it within. The detection of the ChArUco board is made by the
openCV cv2.aruco.detectMarkers function that provides the corners of
the detected markers with their marker ID. These detected points are first
undistorted using the undistort-homography matrix. Since the board
matches the arena dimensions it is possible to calculate the real-world
locations of each marker. Using the undistorted locations of the markers
and their real-world locations PreyTouch calculates the real-world-
projection-matrix using the openCV findHomography function, and like
the undistort matrix it is saved by camera and date. This procedure is
conducted on a per-camera basis, provided the camera remains sta-
tionary. In the event of any camera movement, it becomes imperative to
repeat this process. For more details on the process and explanations for
how to run it in PreyTouch see camera calibration guide.

Integration with OpenEphys. PreyTouch was tested with the Open-
Ephys electrophysiology recording system. The cameras in PreyTouch
are set in trigger mode, which is controlled by the PreyTouch software
through a camera trigger Arduino. To ensure synchronization with
OpenEphys, PreyTouch pauses the camera trigger for 8 s at the start and
end of each experiment block. This pause allows one to identify these
trigger interruptions in the recorded OpenEphys digital data and accu-
rately extract the correct experiment triggers. Additionally, PreyTouch
activates the IR LED for 1 s at the beginning of a block immediately after
the trigger pause and at the end just before the trigger pause. This IR
signal was used to confirm that the synchronization is functioning cor-
rectly by comparing video signals with trigger times.

Integration with PsychoPy. Experiments in the visual and auditory
domains developed using the PsychoPy framework™ can be easily
implemented in PreyTouch. This is achieved by transferring the Psy-
choPy experiment files to a specific directory within PreyTouch (detailed
guidelines are provided on the PreyTouch GitHub repository).

Prey catch task

Lizards were introduced into the experimental arena that included a heat
lamp, a small shelter facing the screen, and a water dish. The experiments
began after a 12-hour acclimation period in their new environment. The
primary source of nourishment for the lizards came from the feeder dis-
pensers (Tenebrio molitor larvae) awarded upon successful virtual insect
captures (one worm for each successful attempt). Additionally, the lizards
received greens once a week.

The experimental activities occurred daily from 08:00 to 17:00, with a
series of trials conducted hourly. The experiment involved various trial
types, each with specific goals that needed to be met before moving on to the
next phase. The system automatically calculated these goals and scheduled
the sessions.

Experimental Phases:

1. Random Low Horizontal: Insects move horizontally between holes at
random speeds (2, 4, 6, 8 cm/s) and directions. The objective was to
achieve 30 hits at each speed.

2. Circular Movement: Insects move in a circular path with random
speeds (2, 4, 6, 8 cm/s) and directions. The aim was to secure 20 hits at
each speed, with a 20% chance of receiving a reward on a miss.

3. Low Horizontal: Insects move at a constant speed of 6 cm/s horizon-
tally, starting from right to left for 100 trials before switching directions
for another 100 trials.

Analysis

Alignment of prey data and pose. The synchronization of camera
clocks with the server clock is lacking, resulting in a misalignment
between the extracted animal pose from the camera frames and the screen
events obtained from the prey (bug) application. To address this dis-
parity, when commencing an experiment, we initiate a query to each
camera to retrieve its current time. Subsequently, we calculate the time
difference in nanoseconds between the server time and the camera time,
preserving this value for each camera process. This calculated difference
serves the purpose of converting frame timestamps to align with the
server time.

Evaluation of classification models. All the assessment of classification
models, such as tongue-out detection, is conducted utilizing the scikit-
learn package (v1.1.2) for metrics. Upon the completion of model
training on the train-set, the test-set (observations unseen during train-
ing) is subjected to scikit-learn methods to compute the following
metrics: Confusion Matrix: A pivotal table utilized in the evaluation of
classification models, presenting counts of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predictions,
summarizing model performance comprehensively.

ROC curve. (Receiver operating characteristic) Offering insights into the
sensitivity (true positive rate) and specificity (false positive rate) trade-off
across diverse decision thresholds, the ROC curve is a valuable tool for
understanding model performance.

Precision-recall curve. Particularly essential in imbalanced scenarios, the
precision-recall curve delineates the trade-off between precision and recall.
It aids in threshold selection and provides a comprehensive view of a
model’s efficacy in capturing positive instances. The area under the PR curve
(AUC-PR or AP) condenses the information from the entire PR graph into a
single metric, with a higher AP indicating superior overall model perfor-
mance, serving as a useful summary measure.

Real-time latency measurements. To measure real-time feedback
latency, we modified the original processing block to incorporate precise
external timestamps at its start and end points. Specifically, instead of
using the tongue protrusion event to trigger the strike cascade, we acti-
vated an infrared LED light using an external trigger and added code to
detect the LED’s onset in the camera frame. This detection was used to
trigger the strike cascade but we continued to process camera frames
using the tongue detection model to incorporate its latency. The prey
application was further modified to darken the entire screen instead of
prey jumping or accelerating. The camera frame exhibiting darkening
was then detected using an intensity threshold crossing. Accurate event
timestamps were recorded in OpenEphys. Start time was marked by the
digital trigger turning on the IR light. End time was marked as the digital
trigger sent by the camera to OpenEphys during the acquisition of the
darkening frame. Thus, the end-to-end latency of real-time strike
detection was defined as the time from IR light onset to the darkening of
the screen (Fig. 3f). Furthermore, using the PreyTouch software, we
measured the various subdivisions of software latencies that contribute to
this overall end-to-end latency using the PC clock. These included: (1)
image handling - retrieving the arena frame from the camera’s memory
buffer and resizing it to fit the model, (2) model prediction of tongue-out
detection, and (3) sending the “tongue detected” event to the screen
application in the browser, triggering the prey’s jump or acceleration
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Table 2 | List of animals participating in the study

ID Species Sex Weight [g] Age [years]
PV 1 Pogona Vitticeps M 203 2.1
PV 2 Pogona Vitticeps M 185 1.4
PV 3 Pogona Vitticeps F 214 2.2
PV 4 Pogona Vitticeps [ 201 14
PV 5 Pogona Vitticeps M 194 1.1
BP 1 Pelophylax Bedriagae F 82 15

(Fig. 3g). In addition to these software delays, there are two hardware
delays which cannot be measured by PreyTouch. To measure the camera
acquisition delay, we used OpenEphys triggers to measure the time from
the IR light onset trigger to the camera frame trigger during the first frame
in which increased IR illumination was detected (10.2 + 7.1 ms). The time
from sending the command to change the frame displayed on the screen
(prey jump) until this frame was displayed was not measured directly but
derived by subtracting all measurable latencies from the total end-to-end
latency (Fig. 3g). Our calculation included two frame acquisition delays.
One between the LED’s onset and the time of increased intensity frame
trigger, and one between the screen offset and the decreased intensity
frame trigger. However, the actual end-to-end latency does not include
the second frame delay. We therefore subtracted one camera delay
(10.2 £ 7.1 ms) from the final latency results. These delays were calculated
with a camera and a screen with a 60 Hz fresh rate. Higher refresh rates
could be used if shorter delays are needed.

Statistics and reproducibility

Regression models. All regression models in the paper (Fig. 4) are calculated
using the Scipy (v1.10) method of statslingress with 2-sided alternative
hypothesis. The lingress method outputs the slope and intercept of the
regression model, the Pearson correlation coefficient (r-value) and the p-value
for a hypothesis test whose null hypothesis is that the slope is zero, using Wald
Test with t-distribution of the test statistic.

Box plots. All the box plots in the paper were created using Seaborn
(v0.13). The box represents the interquartile range (IQR), the middle bin
is the median and the “whiskers” extend to points that lie within 1.5 IQRs
of the lower and upper quartile. Observations falling outside this range
are displayed as outliers.

Sample sizes were selected according to common practices in the field
taking into account the nature of the experiments performed and the
availability of the non-conventional animal species studied. Results were
replicated across independent experiments with the exact number of sta-
tistical replicates noted in the figure legends and text.

Animals

Pogona vitticeps. Lizards were purchased from local dealers and housed
in an animal house at I. Meier Segals Garden for Zoological Research at
Tel Aviv University. Lizards were kept in a 12-12 h light (07:00-19:00)
and dark cycle and a room temperature of 24 °C. Prior to entering the
arena, lizards (Table 2) are fed a diet comprising mealworms (Tenebrio
molitor), cockroaches (Nauphoeta cinerea), and vegetables such as car-
rots and parsley. Once introduced to the arena, the lizards exclusively
receive mealworms from the automated reward dispenser with a petri
dish containing vegetables provided at the end of the week. A water bowl
is always accessible.

Pelophylax bedriagae. Frogs were caught from the wild and housed in
an outdoor pond at I. Meier Segals Garden for Zoological Research at Tel
Aviv University. Before introducing the frog to the arena, the top of the
arena is covered with a net (preventing the frog from leaping out), and a

large plate with dechlorinated water is placed inside the arena in proxi-
mity to the screen. The frog was rewarded with mealworms (Tenebrio
molitor) from the dispenser upon successful strikes.

We have complied with all relevant ethical regulations for animal use.
Ethical protocols were approved by Tel Aviv University ethical committee
(Approval numbers: TAU-LS-IL-2201-112-4, 04-21-055, TAU-LS-IL-
2208-155-4).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The datasets used to generate the figures together with the code for gen-
erating them is available from GitHub (https://github.com/
EvolutionaryNeuralCodingLab/PreyTouch) as well as Zenodo®.

Code availability
All code and arena construction instructions can be accessed on GitHub
(https://github.com/EvolutionaryNeuralCodingLab/PreyTouch) as well as

Zenodo®.
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