
The Neuron as a Direct Data-Driven Controller
Jason Moorea, Alexander Genkinb, Magnus Tournoyb, Joshua Pughe-Sanfordb, Rob R. de Ruyter van Steveninckc, and
Dmitri B. Chklovskiia,b,1

This manuscript was compiled on January 3, 2024

In the quest to model neuronal function amidst gaps in physiological data, a promising strategy is to develop a normative theory that interprets
neuronal physiology as optimizing a computational objective. This study extends the current normative models, which primarily optimize
prediction, by conceptualizing neurons as optimal feedback controllers. We posit that neurons, especially those beyond early sensory
areas, act as controllers, steering their environment towards a specific desired state through their output. This environment comprises
both synaptically interlinked neurons and external motor sensory feedback loops, enabling neurons to evaluate the effectiveness of their
control via synaptic feedback. Utilizing the novel Direct Data-Driven Control (DD-DC) framework, we model neurons as biologically feasible
controllers which implicitly identify loop dynamics, infer latent states and optimize control. Our DD-DC neuron model explains various
neurophysiological phenomena: the shift from potentiation to depression in Spike-Timing-Dependent Plasticity (STDP) with its asymmetry, the
duration and adaptive nature of feedforward and feedback neuronal filters, the imprecision in spike generation under constant stimulation, and
the characteristic operational variability and noise in the brain. Our model presents a significant departure from the traditional, feedforward,
instant-response McCulloch-Pitts-Rosenblatt neuron, offering a novel and biologically-informed fundamental unit for constructing neural
networks.

Neuron | Control | Dynamics | ...

Despite the wealth of mechanistic insights into neuronal physiol-
ogy, constructing generalizable models of brain function remains a
formidable challenge in neuroscience. This difficulty largely stems
from the inherent variability of biological neurons, characterized
by an array of challenging-to-quantify parameters like ion channel
densities. A promising strategy to overcome this challenge involves
developing a normative theory of neuronal function, conceptual-
izing neuronal physiology as an optimization of a computational
objective. Such a normative theory can potentially mitigate the
limitations posed by scarce physiological data through a focus on
the functional integrity of computational models.

Shining examples of such a normative approach are the efficient
coding and predictive information theories. Efficient coding (1–7),
by maximizing transmitted information under physical constraints,
views spike-triggered averages (STAs) as optimal feedforward fil-
ters and rationalizes their adaptation with input statistics. Predictive
information theories (8–12), by optimizing the encoding of future-
relevant information, have demonstrated quantitative congruence
with experimental observations in early sensory areas. These
theories apply beyond these areas, as evidenced by the adaptive
nature of feedforward filters in other neuronal types (13, 14).

However, this perspective does not fully account for certain
physiological attributes of neurons. Our analysis reveals that neu-
rons adapt not only their feedforward filters but also their spike-
history-dependent (feedback) filters, suggesting a functional role
beyond basic housekeeping operations like sodium channel dein-
activation during refractory periods. Furthermore, whereas current
injections in neurons with identical high-variance waveforms pro-
duce consistent spike trains, constant current injections result in
more variable outputs (14). Neither feedback filter adaptation, nor
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inconsistent response to constant current injections are predicted
by efficient coding.

While prediction remains a crucial aspect of neuronal compu-
tation beyond early sensory areas, it likely isn’t the sole compu-
tational objective. Neurons, particularly in motor and pre-motor
areas, are tasked with not only forecasting but also influencing
future states of the external environment through precise control
signals. Additionally, the pervasive presence of feedback loops in
the brain (15–18) underscores that neuronal outputs often modu-
late their own inputs physiologically.

These observations have led us to expand the predictive neuron
model, incorporating optimal feedback control into the normative
framework. We posit that neurons, especially those beyond early
sensory areas, act as feedback controllers, aiming to steer their
environment toward a desired state, as depicted in Fig. 1A. The
neuronal environment encompasses both the circuits of intercon-
nected neurons and external motor sensory loops, allowing the
neuron to assess control efficacy through synaptic feedback.

At first glance, the task of being a feedback controller may
seem daunting for a neuron. To begin with, the dynamics of its
environment are not known to the neuron a priori, necessitating
learning them from data. Traditional system identification methods
tackle this by deducing dynamic parameters (e.g., parameters A, b,
and C in linear state-space models, as illustrated in Fig. 1A) from
historical observations and control signals (19). These parameters
form the basis for deriving a control law that optimizes specific
objectives, like optimal or robust control (20). When dealing with
low-dimensional or noisy observations, the control law needs to be
based not on immediate observations, y, only but on an estimated
state, x̂, (20) derived from past data—a process known as output
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feedback control and Kalman filtering (Fig. 1A). Although, for linear
dynamics, the above tasks have known solutions (19, 20), they are
computationally too demanding for a single neuron to perform or
even to represent the dynamic parameters explicitly.

To implement a biologically plausible feedback controller, we
adopt the novel DD-DC framework (21–23). The crux of DD-DC is
to sidestep the explicit representation of the controlled dynamical
system and the explicit inference of the latent state, instead directly
mapping observations to control signals. This mapping is learned
from historical pairings of observations and control signals. In sce-
narios where the remainder of the loop is represented by a linear
dynamical system of order n ≥ 1, with scalar input (control signal)
and output (observations), this relationship is characterized by an
Auto-Regressive Moving Average (ARMA) process, as depicted in
Fig. 3A.

Conceptualizing neurons as controllers in general and modeling
them as DD-DCs in particular provides insights into multiple seem-
ingly unrelated experimental observations. Firstly, it can explain the
potentiation/depression transition in Spike-Timing Dependent Plas-
ticity (STDP) and its asymmetry (Fig. 1D) (24–26). Secondly, it can
account for the temporal extent (non-instantaneous nature) of feed-
forward (STA) and feedback (spike-history dependent) filters and
their adaptation to input statistics (Fig. 3 B-F). Thirdly, it explains
the loss of temporal precision in the neuronal spike-generation
mechanism under constant input (Fig. 4, Right) (14). Fourthly, the
operation of DD-DC in the online setting requires variability and/or
noise, which is consistent with many neurophysiological observa-
tions (27–33). Finally, viewing neurons as controllers is consistent
with the observations of movement related activity throughout much
of the brain including traditionally sensory areas (34, 35).

Fig. 1. A: A schematic representation of a neuron as a feedback controller in a closed
loop. B: A scalar fully observed dynamical system controlled by tuning the weight of
a synapse, w, in the control law. C: The subspace of valid pairings of observations
and controls (blue plane) is spanned by the previously observed states (blue vectors).
The intersection of the valid dynamical subspace with the xt+1 = 0 plane defines
the control law (red line). D: Spike-timing dependent plasticity (STDP): the relative
change in the synaptic weight, ∆w/w, vs. the time interval between the pre- and
post-synaptic spikes, tx − tu, showing the potentiation (causal) and depression
(anti-causal) windows (24–26).

Our model applies not only to neuroscience but also to machine
learning and artificial intelligence. Current artificial neural networks

are typically based on a neuronal unit inspired by an outdated
view of neurons (36, 37). This neuronal unit is overly simplistic in
that it lacks internal feedback and temporal dynamics (for more
details, see below). Therefore, our proposed DD-DC model of a
neuron could serve as an alternative foundational building block
for constructing biologically-inspired artificial neural networks.

The Direct Data-Driven Control (DD-DC) framework

In this section we provide an overview of the DD-DC framework
(21–23). In our exposition, we use lowercase letters to denote
scalar variables, lowercase boldface for column vector variables,
and uppercase boldface for matrices and row vectors.

For the sake of clarity, we model the neuronal environment as
a linear dynamical system in a discrete-time state-space represen-
tation (Fig. 1A):

xt+1 = Axt + but, [1]

yt = Cxt, [2]

where xt ∈ Rn represents the latent state of the environment
at time t, ut is the control signal from the neuron, and yt is the
neuron’s observation. In the realm of model-based control, the
dynamics parameters A, b, and C are typically predefined, an
unrealistic presumption in a biological context. We consider the
system Eq. (1) to be fully controllable and observable. In some
cases, the optimal control signal is linearly related to the estimated
latent state variable, x̂,

ut = Kx̂t. [3]

The DD-DC was developed for scenarios where the param-
eters A, b, and C are unknown to the controller. It generates
control signals directly from the observations, bypassing an ex-
plicit representation of the system dynamics and the latent state.
This mapping is learned from historical pairings of observations
and control signals. The intuition behind DD-DC is that any valid
observation-control pairing belongs to the subspace delineated
by Eq. (1) spanned by historical pairings (Fig. 1C). This intuition
is formalized by Willems’ fundamental lemma (21), which posits
that each observation-control pairing can be expressed as a linear
combination of k historical pairings (1, 2, ..., k < t),[x̂t+1

x̂t

ut

]
=

[x̂1+1 . . . x̂k+1
x̂1 . . . x̂k

u1 . . . uk

]
g, g ∈ Rk, [4]

assuming the matrix composed of x̂ and u rows on the right has full
row-rank (linear independence), a condition known as persistent
excitation.

The DD-DC computes the control signal directly from historical
pairings by solving Eq. (4) for ut, thereby obviating the need for
an explicit representation of the dynamical system (A, b, and C)
and the latent state, x̂, in the controller. Initially formulated for
ideal, noise-free, linear dynamics in offline settings with extensive
datasets (21), DD-DC has recently been expanded to accommo-
date noisy observations, non-linear dynamics, online applications,
and limited datasets (23, 38–41) making it a potent model of com-
putation in biological neurons. In the following sections, we explore
the implications of this hypothesis and demonstrate its alignment
with existing experimental evidence and novel analysis.
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Basic DD-DC Accounts for Spike-Timing-Dependent
Plasticity (STDP)

In this section, we demonstrate how even the most basic DD-DC
neuron model can account for the principal characteristics of STDP
(Fig. 1D). We start with the assumption that all dynamical variables
are scalar (n = 1) and that the system is fully observed, thus
x̂ = y = x (Fig. 1B). This allows us to express equation Eq. (1) in
a scalar form:

xt+1 = axt + but. [5]

We posit that the neuron aims to stabilize the environment’s
state at x = 0, even when its dynamics are unstable (a > 1). To
achieve this, we employ a one-step time-horizon Linear Quadratic
Regulator (LQR), where the optimal control signal u∗

t minimizes
the sum of squared state error and control energy:

u∗
t = arg min

ut

q∥xt+1∥2 + r∥ut∥2. [6]

This LQR objective is fulfilled by a linear control law:

u∗
t = w∗xt, [7]

with w∗, a scalar, representing the synaptic weight in place of K
from Eq. (3), as shown in Fig. 1B.

For simplicity, we initially address the limiting case of LQR with
zero control cost (r = 0), and later present the solution for nonzero
r. In the r = 0 scenario, Eq. (6) is minimized by xt+1 = 0. By
substituting Eq. (7) into Eq. (5) and ensuring xt+1 = 0 for any
given xt we deduce a closed-form LQR solution, w∗ = −a/b.

Of course, neurons must implement this control law without
prior knowledge of a and b, a challenge adeptly addressed by the
DD-DC model. Incorporating xt+1 = 0 into Eq. (4), we obtain:[ 0

xt

u∗
t

]
=

[
x1+1 . . . xk+1
x1 . . . xk

u1 . . . uk

]
g =

[X+
X
U

]
g, [8]

where we introduced row-vector notation, X =
[
x1 . . . xk

]
,

X+ =
[
x1+1 . . . xk+1

]
, and U =

[
u1 . . . uk

]
.

To determine the optimal control signal u∗
t , we first solve the

top two rows of Eq. (8) for g. Given the underdetermined nature
of the problem (k typically exceeds the combined dimensions of x
and u), we express g via a pseudoinverse:

g =
[
X⊤

+ X⊤
] ([

X+
X

] [
X⊤

+X⊤
])−1 [

0
xt

]
=

=
[
X⊤

+ X⊤
]

X+X⊤
+XX⊤ − (X+X⊤)2

[
XX⊤ −X+X⊤

−XX⊤
+ X+X⊤

+

] [
0
xt

]
,

[9]

Subsequently, we substitute this g into the bottom row of Eq. (8)
to obtain

u∗
t = Ug = UX⊤X+X⊤

+ − UX⊤
+X+X⊤

X+X⊤
+XX⊤ − (XX⊤

+)2 xt, [10]

This formulation can be interpreted as a control law Eq. (7), with

w∗ = UX⊤ − UX⊤
+X+X⊤(X+X⊤

+)−1

XX⊤ − (XX⊤
+)2(X+X⊤

+)−1 . [11]

Notably, this control law obviates the need for a neuron to cal-
culate g at each timestep or retain all past values of U, X, and

X+. Instead, it requires only the storage and update of their co-
variances, a biologically plausible process previously utilized in
similarity matching networks (42). Rewriting these covariances as
sums over recent history and omitting the denominator (a positive
scalar indpendent of the control signal) yields:

w∗ ∼
k∑

τ=1

uτxτ − cos (X̂X+)
k∑

τ=1

uτxτ+1, [12]

where cos (X̂X+) = (X+X⊤
+)−1X+X⊤.

In a neurophysiological context, x and u in Eq. (12) symbolize
pre- and post-synaptic neuronal activities, respectively, with non-
zero values during spikes. Consequently, the sums in Eq. (12)
accrue contributions solely when pre- and post-synaptic spikes
are temporally proximate and depending on their temporal order.
Note that although the indices of u and x are the same in the first
sum, this is an artifact of the discrete-time setting, and u must be
delayed by at least a fraction of the time step to be computed from
x. This model naturally accounts for the transition from potentiation
to depression observed in STDP, as well as depression being
weaker than potentiation (as cos (X̂X+) < 1 generically), aligning
with empirical findings (24–26) (Fig. 1D).

The potentiation window of STDP can be viewed as the exten-
sion of the Hebbian rule (43) to the temporal interplay between
spikes. However, the rationale behind the relatively narrow de-
pression window in STDP has remained elusive, largely due to
its seemingly anti-causal nature. Current explanations of this phe-
nomenon, e.g. (44, 45), rely on ad hoc assumptions. In contrast,
our work shows that the apparent anti-causal aspect of STDP is
a natural outcome of conceptualizing neurons as feedback con-
trollers. Specifically, a pre-synaptic spike following a post-synaptic
spike conveys information to the neuron about the effectiveness
or ineffectiveness of its control of the environment. Thus, what is
initially perceived as an anti-causal feature in STDP transforms into
a causal mechanism when viewed through the lens of the feedback
loop inherent in the controller model.

Next, we consider a DD-DC LQR controller with r > 0, which
in the scalar, one-step time-horizon case is given by:

w∗ = UX⊤∥X+∥2 − UX⊤
+XX⊤

+

∥X∥2∥X+∥2 − (XX⊤
+)2 + (∥U∥2∥X∥2 − (UX⊤)2) r/q

.

[13]
The full derivation of this solution is given in the Supplement but it
aligns with the optimal LQR gain:

w∗ = −ab
b2 + r/q

, [14]

as confirmed by substituting X+ = aX + bU into Eq. (13) and
dividing both the numerator and the denominator of Eq. (13) by the
common expression

(
∥U∥2∥X∥2 − (UX⊤)2)

thus reducing it to
Eq. (14).

This solution provides a potential framework to interpret the
variance in STDP profiles documented in various studies (46) in
terms of variance of r.

However, as our Eq. (12) involves covariances with only two
time lags, it does not fully describe the time-course shown in Fig.
1D. This limitation, inherent to the scalar dynamics model Eq. (5),
motivates the exploration of higher order dynamics, as discussed
in an upcoming section on reconstructing temporal filters.

Moore et al. Journal | January 3, 2024 | vol. XXX | no. XX | 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.573843doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.02.573843
http://creativecommons.org/licenses/by/4.0/


Closed-loop DD-DC: malfunction under constant con-
trol law and restoration of function by adding noise to
control

In this Section, we investigated the functioning of the DD-DC LQR
controller through numerical simulations aimed at stabilizing a po-
tentially unstable scalar dynamical system, Eq. (5). Initially, we
operated the controller in an open-loop mode for four time steps,
implementing white-noise control, u, and tracking the resultant
state variable, x. Subsequently, we computed the controller gain,
w, by integrating the recorded values of u and x into the general
LQR solution, Eq. (13). Following this initialization, we transitioned
to a closed-loop operation of the DD-DC LQR controller, recalculat-
ing w at each time step (see Supplementary Material for details).
Our findings reveal that the DD-DC LQR controller successfully
identifies and maintains the optimal value of w up to time = 25, Fig.
2 Left.

For the DD-DC controller to effectively replicate the adaptive
behavior of a biological neuron, it must adjust to the evolving dy-
namics within a real-time, closed-loop framework. Accordingly, the
update algorithm forw incorporates a discount factor, progressively
diminishing the influence of older data on covariance calculations
(see Supplementary Material for details). Initially, the controller
learns and applies the optimal value of w. However, when the
parameters a and b undergo a switch (at time = 25), the controller
fails to adapt, Fig. 2 Left. To uncover the cause behind the DD-DC
controller’s failure to adjust following the static control law phase,
we re-examined the data matrix entering Eq. (8):[

x1+1 . . . xk+1
x1 . . . xk

u1 . . . uk

]
=

[
x1+1 . . . xk+1
x1 . . . xk

wx1 . . . wxk

]
. [15]

Note that the sub-matrix composed of the x and u rows is rank de-
ficient, thereby contravening the persistence of excitation condition.
This rank deficiency signifies a critical limitation in the DD-DC’s
learning capability, as it impairs the system’s ability to extract mean-
ingful information from the data. Operationally, this issue manifests
in the denominator of Eq. (13) approaching zero.

Considering that sensory input may sometimes be constant
(47) and control efforts typically aim for optimality, the question
arises: how can the vulnerability of the online DD-DC controller
be mitigated? Building upon the suggestions of control theorists
(41), we propose that the brain deliberately generates variability
and/or noise, denoted as η, to sustain the persistence of excitation
condition even under static input or control regimes. Formally,

u∗
t = w∗xt + ηt, [16]

Implementing the control law Eq. (16) in the same dynamical sys-
tem is illustrated in Figure 2 Right for VAR(ηt) = 10−6. The
addition of low-variance noise to the control signal re-establishes
the functionality of the DD-DC in an online setting. This noise rein-
states the persistence of excitation, thereby restoring the DD-DC’s
operational efficacy. However, introducing too high-variance noise
could cause significant deviations of the control signal from the
LQR optimal Eq. (14), implying that there might exist an ideal noise
variance level for optimal control performance (see Supplementary
Material for details).

Is there empirical evidence supporting the presence of such
noise within the brain? Locally, such noise might originate from the
inherent unreliability of synaptic transmission (28). On a broader
scale, the brain encompasses specific circuits and neurons dedi-
cated to introducing noise and/or variability, as evidenced in studies
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Fig. 2. Dynamics of the weight, w, and state variable, x, in the online DD-DC LQR
controller over time with the dynamical systems switch at time = 25. Closed loop
control begins at t = 5, at which point the weight, w, is constant and optimal (dashed
line) and the state variable x rapidly converges to zero. Post-switch, in scenarios
without control noise (Left), the DD-DC controller struggles to adapt due to the loss
of persistence of excitation, leading to a sub-optimal w; however, x remains at zero,
indicating no direct loss impact. To demonstrate the controller’s maladaptation, a jolt
∆x = .2 (dashed line in inset) is applied to the state variable x at time t = 55.
Introducing noise into the control law (Right), Eq. (16), facilitates exploration thus
re-establishing persistence of excitation and overall controller performance. This is
evidenced by x swiftly returning to zero and w reverting to its optimal state. The white
bands within the gray shaded areas in the w plots represent regions of stability and
instability respectively.

on songbirds (30) and C. elegans (29). Additionally, the brain can
introduce variability in sensory inputs through the generation of
corresponding motor outputs, exemplified by microsaccades (48).
Given these mechanisms, the operational variability observed in
neural representations (31, 32), appears less paradoxical and
more a natural consequence of the brain’s function as a DD-DC
controller.

Reconstruction of feedforward and feedback temporal
filters from data

We now explore the DD-DC of a dynamical system of order n > 1,
equipped with a scalar control signal, u, and a scalar observation, y
(Fig. 3A). In such systems, observations are partial and insufficient
for direct control, necessitating that the controller estimate the
latent state, x. For linear systems, this latent state can be inferred
from recent sequences of observations and controls using time-
delay embedding techniques (22),

x̂(t) =
[
yt−n . . . yt−1 ut−n . . . ut−1

]⊤
, [17]

enabling us to reformulate the control law, Eq. (3), as:

ut =
[
Kff Kfb

] [
yt−n . . . yt−1 ut−n . . . ut−1

]⊤
. [18]

Here, the feedforward, Kff , and feedback, Kfb, temporal filters
collectively form an Auto-Regressive Moving Average (ARMA)
model of a neuron (Fig. 3A).

In this Section, rather than optimizing feedforward and feed-
back temporal filters, we estimate them from experimental data.
In our experiments, neurons are isolated from the loop and stim-
ulated with sensory input or injected current, y, and the neuronal

4 of 14 Moore et al.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.573843doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.02.573843
http://creativecommons.org/licenses/by/4.0/


Fig. 3. A. Illustration of a neuron modeled as an Auto-Regressive Moving Average (ARMA) controller, characterized by feedforward, Kff , and feedback, Kfb, temporal filters.
B-D. Adaptation of experimentally measured temporal filters (depicted in black, yellow, and blue) to input signal statistics. Solid lines represent mean values, while thin dotted
lines denote standard errors of the mean. Regions where differences are statistically significant (Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons) are
highlighted in red. B. Variation in feedforward (akin to decorrelated Spike-Triggered Average, STA) and feedback (analogous to spike-history-dependence) filters of the blowfly
H1 neuron (49), responding to visual motion against different background luminance levels. C. Feedforward and feedback filters in pyramidal cells from mouse primary visual
cortex (50) responding to current injections with varying mean levels. D. Feedback filters in a salamander retinal ganglion cell (8) for stimuli comprising a drifting bar and a fish
movie (feedforward filter data unavailable). E. Adaptation of feedforward and feedback filters in a Drosophila Olfactory Receptor Neuron (ORN) (51) to odorant concentrations
with varying variances. F. Feedback filters in rat somatosensory cortex pyramidal neurons (52), responding to current injections modulated by an Ornstein-Uhlenbeck process
atop a DC component. Feedforward filters are provided in the Supplement.

response, u, is recorded. These data are compiled into matrices
U =

[
u1 . . . ut

]
and X̂ =

[
x̂1 . . . x̂t

]
, which are linearly

related:

U =
[
Kff Kfb

]
X̂. [19]

We solve for the filters by linear regression using a pseudoinverse,[
Kff Kfb

]
= UX̂⊤ (

X̂X̂⊤)−1
. [20]

Utilizing Eq. (20), we reconstruct the feed forward, Kff , and feed-
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back, Kfb, temporal filters from experimental data across various
model systems, Fig. 3 (see Supplement for details).

While these temporal filters have been previously measured
(53–55), our controller-based perspective offers a novel interpreta-
tion. In a partially observed system, instantaneous observations
alone are inadequate for control. Thus, feedforward and feedback
filters with finite temporal extents are essential for control actions
that are coherent with the latent state Eq. (17). The temporal
extension of these filters aligns with the hypothesis that neuronal
output influences the environment’s latent state and acknowledges
the partial observation of the system.

In each system we studied, neurons were recorded under var-
ious conditions, with stimulus statistics changing between these
conditions. These included the blowfly H1 neuron with varying
background luminance (49), mouse V1 pyramidal neurons respond-
ing to different mean injected current waveforms (50), salaman-
der retinal ganglion cells exposed to distinct visual stimuli (8),
Drosophila olfactory receptor neurons reacting to varying odorant
concentrations (51), and pyramidal neurons in the rat somatosen-
sory cortex stimulated with current injections of diverse means and
variances (52). As shown in Fig. 3, the filter shapes adapt to both
the mean (µ) and variance (σ) of the input statistics.

The adaptation of feedforward filters to input changes is well-
documented (2, 4, 14) and suggests a functional role beyond mere
biological necessity, explainable by efficient coding and predictive
information theories (3, 5, 12). Our analysis extends this under-
standing to feedback filters, which also adapt to changing stimulus
statistics. This adaptation, not predicted by existing theories, calls
for a new framework that treats feedforward and feedback filters
equally, such as the controller neuron model.

Spike generation mechanism loses precision under con-
stant input

Neuronal spike generation typically showcases remarkable pre-
cision: repeated injections of the same current waveform into a
neuron yield highly reproducible spike trains, precise down to mil-
liseconds (13, 14) (Fig. 4, Left). This level of precision in spike
timing must incur metabolic cost and is therefore suggestive of
a functional significance. Intriguingly, this precision deteriorates
when the neuron is subject to a constant current input (14) (Fig.
4, Right), exposing a notable limitation in the spike-generation
mechanism. The DD-DC model of neuronal function offers an

insightful explanation for this observed decline in spike-timing pre-
cision with constant input. The DD-DC model posits that a neuron
reconstructs any state as a weighted sum of past states, which is
effective only when these past states are sufficiently varied (21).
This is rooted in the persistency of excitation condition, requiring
the matrix of past states in Eq. (4) to have full row-rank. Under
constant input, however, this condition fails as the lag vectors in
Eq. (17) become uniform. Consequently, when a neuron processes
recent history (approximately 100ms in Fig. 4, Right), the DD-DC
model predicts erratic outputs in response to a constant current,
mirroring the vulnerability of the spike-generation mechanism to
such inputs.

Traditionally, the variability in spike timing under constant input
was ascribed to intrinsic ion channel noise, not controlled for in
experimental setups (56). This noise was thought to be inconse-
quential for spike timing in the presence of highly variable inputs,
as the effects would be overshadowed by the abundance of open
ion channels. However, even slight variations in injected current
(STD ≈ 50pA) are observed to restore spike-timing precision (52),
posing questions about the underlying mechanisms of such sen-
sitivity. Our model offers a different perspective, suggesting that
this sensitivity to low-variance noise stems from the high condition
number (ratio of the largest to the smallest singular values) of
time-delay covariance matrices. These matrices must be inverted
to compute a neuron’s response (akin to Eq. (20)). Our hypothesis
posits that the singularity at constant current can be empirically
validated by measuring spike time variability against noise variance
below the threshold reported in (14), and correlating it with the
condition number of the time-delay covariance.

Discussion

The power of the proposed DD-DC model of a neuron is in that,
starting from a single postulate, it offers explanations for multi-
ple seemingly unrelated neurophysiological phenomena, including
the switch between potentiation and depression in STDP and its
asymmetry, the extended nature and input-dependent adaptation
of feedforward and feedback temporal filters, the imprecision of the
spike-generation mechanism under constant input, and the preva-
lence of operational variability and noise in the brain. Although
each of these explanations provides only a circumstantial evidence,
their multitude and variety provide strong support for the DD-DC
model. This perspective has the potential to deepen and refine our

Fig. 4. Left: High-variance current injections into a neuron yield remarkably consistent spike trains over multiple trials, showcasing the precision of the spike-generation
mechanism. Right: In contrast, a constant current input leads to notably variable spike trains, revealing a significant reduction in spike-timing precision. This dichotomy
highlights the neuron’s differential response to varying and constant stimuli (14).
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understanding of the brain, and may also aid in the development
of biologically-inspired artificial neural networks.

Nonlinear dynamics and control. In this study, we focused on
a DD-DC model that assumes discrete-time and linear dynamics
of the environment. In reality, the dynamics are continuous-time
and nonlinear. As is often the case in control theory, we expect
that our framework can be naturally extended to continuous time.
As nonlinear dynamics of the loop can be approximated locally as
linear, we speculate that they can be modeled by a switching linear
system controlled by a set of switching DD-DCs (see Fig. 5, Left).
This would explain why layers of processing in the brain contain
many neurons in parallel performing analogous functions.

How to derive a nonlinear controller model of a neuron from the
normative perspective? Even for linear plant dynamics, apart from
special cases like LQR, the optimal controller may not be linear.
Perhaps, neuronal action potentials, in addition to having higher
information transmission capacity relative to graded potentials in
noisy environments (57–59), have other operational advantages
similar to widely used bang-bang control (60). Deriving such a
controller may help model neurons with active conductances and
spikes (61) on the algorithmic level.

Stability and performance objectives. In control theory, the
stability of the closed loop is of primary concern. While a stability
criterion for DD-DC can be formulated (22), it allows for numerous
solutions. How to select a specific solution out of the stable set
is not clear. One approach could be to look for the most stable
solution, which would remain stable even in the presence of noise
and uncertainty about the parameters of the dynamical system.
Another approach could be based on the observation that the
brain operates at the edge of chaos (62, 63), favoring borderline
stable solutions. A similar borderline stable solution is suggested
by viewing a neuron as an integrator, which would require the top
eigenvalue to have a unit norm (64). Such flexibility in the choice
of the objective may allow one to use different solutions to model
different neuronal classes.

A network of DD-DC neurons. The DD-DC model of a neu-
ron presented here lumps the rest of the neurons into a single
dynamical system, yet each fellow neuron can also be modeled as
a DD-DC. This raises the question of how multiple DD-DC neurons
interact with each other in a network. We leave this question to fu-
ture work and comment only on several experimental observations
that support this view.

First, measurements of synaptic plasticity may shed light on
the temporal lag caused by the feedback loop. In the case of

STDP (Fig. 1, Right), pre- and post-synaptic spikes must be
almost synchronous for plasticity to occur, indicating that the loop
traverses an order of one synapse. This finding corresponds to
the known abundance of short local feedback loops in the cortex
(16, 65). At the other extreme, the plasticity of some synapses
in the cerebellum and the hippocampus peaks when the spikes
lag by tens of milliseconds (66, 67). This suggests longer loops
involving different brain regions or even the external environment
(68). The abundance of loops is not limited to mammalian brains
(15) and has been reported in invertebrates as well (17, 18).

Second, the ability of individual neurons to control long (multi-
synaptic and trans-environment) loops may seem unrealistic. How-
ever, theoretical analysis (69, 70) and experimental observations
seem to support long-range propagation of signals from individual
neurons (71). Specifically, rodents can be trained to behaviorally
report single-neuron electrical stimulation in the barrel cortex (72)
suggesting that the spikes of a single neuron make impact suffi-
ciently far downstream to elicit behavior. Also, stimulation of single
neurons in the motor cortex evoke whisker movements (73) sug-
gesting that single neurons can produce observable effects on
the environment. Taken together, these experiments support the
propagation of individual neurons’ spikes around long loops.

Third, modeling neurons as DD-DC controllers offers an expla-
nation for the representation of movement outside of the motor
cortex (34, 35).

As DD-DC neurons in every layer (Fig. 5, Right) combine
systems identification and control, they acquire characteristics of
both sensory and motor representations. Therefore, it is natural
to expect a mixed representation at every layer with a gradual
transformation from sensory to motor. The controller perspective
also accounts for the context dependence of neuronal representa-
tions (33). As neuronal activity should not just reflect the sensory
stimulus but rather optimal control, which is context dependent, it
is natural to expect such representations.

Relationship to Other Work

The concept of modeling neurons as controllers intersects with sev-
eral established research avenues. A notable idea in neuroscience
relates neuronal output to a prediction of future inputs (2, 6, 11, 12).
To optimize control the DD-DC neuron implicitly infers environmen-
tal dynamics, which could also be used for prediction. However,
the controller neuron does not just predict the future input but aims
to influence it through its output.

Fig. 5. Left: Illustration of controlling a nonlinear dynamical system using multiple switching DD-DCs. Right: Depiction of a deep network model where each neuron exerts
control over its immediate environment, contributing to the broader control exerted by the entire brain over the external environment.
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Normalization models, which have been both experimentally
observed and theoretically justified (74–76), resemble the feedback
filter in our model. However, these models focus on interactions
among parallel channels under static stimuli, overlooking temporal
correlations and stimulus dynamics. In contrast, the DD-DC model
proactively controls inputs through its influence on the underlying
dynamical system.

Our approach also aligns with the idea that spiking neuron
networks encode temporally variable inputs (77). Although these
networks are predominantly feedforward and don’t allow neuron
outputs to modify network inputs, both concepts emphasize learn-
ing generative dynamics.

Data-driven control in network contexts, including brain net-
works, has been investigated (78). However, these studies gen-
erally involve controlling networks through external perturbations
and lack a focus on biological plausibility. Unlike our neuron-centric
DD-DC model, they require access to multiple network nodes and
are constrained by the resolution of technologies like fMRI.

The DD-DC ARMA model for neurons (Fig. 3A) shares sim-
ilarities with Generalized Linear Models (GLMs) (55), notably in
possessing feedforward and feedback filters. But, while GLMs
are stochastic and nonlinear, the DD-DC model is deterministic,
linear, and provides a rationale for the duration and adaptation
of these filters. The concept of temporal integration in our model
also echoes the principles of integrate-and-fire models (79), laying
groundwork for future connections between these theories.

Differing from the conventional McCulloch-Pitts-Rosenblatt unit
in artificial neural networks, the DD-DC neuron integrates inputs
over time and features an auto-regressive loop, unlike the instanta-
neous response of standard units. Also, in contrast to network-wide
optimization in artificial neural networks, the DD-DC model opti-
mizes objectives at the neuronal level.

Neurons are sometimes conceptualized as agents in the rein-
forcement learning (RL) paradigm, (80, 81). While control theory
and RL share commonalities, key distinctions include control the-
ory’s implicit dynamical systems model of the environment and
its focus on optimizing specific objectives based on controls and
observations, as opposed to the reward-maximization approach in
RL.

Previous studies have conceptualized the whole brain as a
controller acting on the external world (82–84), and used LQR
with delays/noise to model internal feedback (85). Our DD-DC
approach extends this concept to individual neurons. If both the
entire brain and single neurons can be modeled as controllers, in-
termediate levels of brain structure might also fit this model (86, 87).
Earlier models separated sensory system identification and motor
control (88), but our unified neuron-as-controller model eliminates
the need to match corresponding sensory and motor units. Future
research could explore how coherent controller actions emerge in
self-organized networks of such neuron-controllers.
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Supplementary Information

A. Derivation of the DD-DC LQR controller

Given an initial state x0, controller finds a control signal u∗ that
brings the state to the value x∗ minimizing LQR loss

∥x∗∥2 + r/q∥u∗∥2. [21]

Corresponding DD-DC optimization problem takes the form:

min
g

(gX⊤
+)2 + r/q(gU⊤)2 [22]

s.t. (gX⊤) = x0 [23]

The chart in Fig. 6 shows sample vectors X,U,X+ which are
co-planar due to the dynamics. Without loss of generality, We
consider the solution vector g to be co-planar with them. The
blue line AC orthogonal to X is the locus of solutions satisfying
the constraint, so that |OB| = x0/∥X∥. We see that |OC| =
|OB|/ cosϕ, |OA| = |OB|/ cosψ, |BC| = |OB| tanϕ, |BA| =
|OB| tanψ. Denote d := |DC|, we’ll be solving the problem in

Fig. 6. Illustration for the derivation of DD-DC LQR controller.

this variable. Let DF,DE be orthogonal to U,X+, then observe
that ∠CDF = ϕ,∠ADE = ψ as angles with orthogonal sides.
This gives expressions:

|OF | = |OB|/ cosϕ− d sinϕ,
|OE| = |OB|/ cosψ − |OB|(tanϕ+ tanψ) sinψ − d sinψ.

Note also that gX⊤
+ = |OE|∥X+∥, gU⊤ = |OF |∥U∥. Substitut-

ing all that, we can rewrite the objective as quadratic expression in
d. Solution takes the form

d = (− sinψ cosψ + sin2 ψ tanϕ)∥X+∥2 + tanϕ∥U∥2r/q

cosϕ cosψ(sin2 ψ∥X+∥2 + sin2 ϕ∥U∥2r/q)
x0

∥X∥

The optimal control signal we seek is u∗ = gU⊤ = |OF |∥U∥,
which gives:

u∗ = cosϕ sinϕ+ cosψ sinψ − cosψ sinψ sin2 ϕ− cosϕ sinϕ sin2 ψ

cosϕ cosψ(sin2 ψ∥X+∥2 + sin2 ϕ∥U∥2r/q)

× x0∥U∥∥X+∥2 sinψ
∥X∥

For online calculation it is convenient to have an expression in
variances and covariances of the variables, so we reformulate
trigonometric expressions through cosines only. For that purpose
we group terms first and fourth, second and third from the numera-
tor of the first fraction:

cosϕ sinϕ(1 − sin2 ψ) + cosψ sinψ(1 − sin2 ϕ)
= cosϕ sinϕ cos2 ψ + cosψ sinψ cos2 ϕ)
= cosϕ cosψ sin(ϕ+ ψ)

Bringing in sinψ from the second fraction numerator we use cosine
of differences rule to observe:

cosϕ cosψ [sin(ϕ+ ψ) sinψ] = cosϕ cosψ [cosϕ− cosψ cos(ϕ+ ψ)]

Now we can rewrite the expression for u∗:

u∗ = cosϕ− cosψ cos(ϕ+ ψ)
(1 − cos2 ψ)∥X+∥2 + (1 − cos2 ϕ)∥U∥2r/q

∥U∥∥X+∥2

∥X∥ x0

Replacing cosϕ = ∥XU⊤∥
∥X∥∥U∥ , cosψ = ∥XX+

⊤∥
∥X∥∥X+∥ , and cos(ϕ+ψ) =

∥X+U⊤∥
∥X+∥∥U∥ , we obtain u∗ = w∗x0 where w∗ is defined in Eq. (13).

B. Simulation of the DD-DC LQR controller

The simulation presented in Fig. 2 begins in the open loop mode
with random initialization of x and random Gaussian control signal
with standard deviation 0.01. Open loop runs for 4 steps, after that
the control weight, w, is estimated using Eq. (13) and then updated
at each time step in the closed loop setting using the variances
and covariances of the variables x, u, x+. In the online setting,
these variances and covariances are updated at each time step
according to

covα,β(t+ 1) = γcovα,β(t) + (1 − γ)α(t)β(t),

where α, β are any of x, u, x+. For this simulation we set γ = 0.5.
For the noise process, Fig. 2 Right, Gaussian noise with standard
deviation σ = 0.001 was added to the control signal u.

To check the ability of the solution to adapt to changes of the
control system parameters a, b were abruptly switched at steps 25
as follows: a = 1.1, 1.3; b = 1, 0.5. In addition, a jolt was added to
the system state x: 0.2 at step 55. Throughout the simulation, the
LQR penalties were kept constant at r/q = 0.

Fig. 7. Heat map of the ratio of losses Lσ =
∑

t
x2

t (σ) for different levels of

Gaussian noise σ over the no-noise loss L =
∑

t
x2

t (0). For each noise level,

∼ 5 × 104 simulations were run (∼ 107 trials total). The dotted line encloses all
trials, and the solid line encloses 95% of all observed trials. For the majority of trials
the ratio is less than one indicating that the addition of noise is advantageous. The
average loss ratio is observed to be lowest for σ in the range 10−8 − 10−2.
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C. Datasets

C.1 Blowfly neuron H1 (Fig. 3B in the main text). Flies main-
tain their flight heading by utilizing visual feedback to modulate
wingbeat-amplitude asymmetry. The bilaterally symmetric pair of
H1 neurons (one for each direction of motion), processes informa-
tion for horizontal direction (yaw) control (53). The firing of these
neurons not only signals the horizontal velocity of optic flow (53)
but also plays a role in controlling wingbeat asymmetry (89). In
the experiment a computer controlled stepper motor was used
to rotate the fly along a vertical axis while spike trains from H1
were recorded extracellularly. The fly sat immobilized in wax in
a plexiglass cylinder to allow temperature to be controlled at 22
degrees Celsius.

The setup was situated outdoors in a wooded area on a bright
day (49). The experiment started 42 minutes before sunset and
ended 48 minutes after sunset. During this 90 minute interval, light
intensities decreased by a factor of approximately 6 × 105. The
fly was subjected to a repeated yaw motion (period 10 seconds),
presented 540 times. The yaw velocity was synthesized by a
Markov model derived from a video recording of flies in pursuit
flight, and is therefore representative of natural flight. Regression
was performed separately for 4 parts of the 540 sessions: two
during bright light time, one - middle, one - dark. The two bright
parts were very similar, so filters are presented for the 1st, 3rd,
and 4th part.

C.2 Mouse V1 pyramidal neuron (Fig. 3C in the main text).
Response profiles of pyramidal neurons in primary visual cortex
were measured using patch clamp recordings in brain slices from
adult mice between the ages of P45 to P70 (50). The specific
neuron analyzed here was from a fluorescently-labeled neuron
from a mouse expressing tdTomato in a Cre-dependent manner in
a Cux2-Cre transgenic mouse line, which labels excitatory neurons
in cortical layers 2/3 and 4.

Voltage was recorded while injecting a stimulus composed of
pink noise riding on top of square wave pulses. Pulses were 3
seconds long at rheobase (“Low µ”) or 1.5 times rheobase (“High
µ”). Pink noise with a coefficient of variation equal to 0.2 was
generated using 2 different seeds. Each stimulus was applied
to the neuron 4 times for a total of 8 trials of Low and High µ.
Recordings were initially performed at a sampling rate of 200 kHz.
Action potentials were detected using standard approaches and
the binary spiking activity was downsampled to 1 kHz for analysis.

C.3 Salamander retinal ganglion cell (Fig. 3D in the main
text). In response to the visual stimulation, retinal ganglion cells
generate reproducible spike trains which can be predicted using a
combination of feedforward and feedback temporal filters (54, 55).
Retinal ganglion cells from larval tiger salamander retina were
extracellularly recorded from freshly dissected retina pressed onto
a multi-electrode array.

Movies were presented to the retina at 60 frames/second and
voltages were recorded at 10 kHz. The “Bar” stimulus consisted
of a black bar moving against a gray background according to the
Brownian motion of a particle bound by a spring to the center of
the display. This was repeated 62 times, with each trial lasting 8
seconds. The “Fish” stimulus consisted of a 18-second clip of
a fish swimming in a tank with swaying plants in the background.
This stimulus was repeated 102 times. Action potentials were
detected using standard approaches and the binary spiking activity
was downsampled to 1 kHz for analysis.

C.4 Drosophila olfactory receptor neuron (Fig. 3E in the
main text). Responses of olfactory receptor neurons (ORN) in
Drosophila was studied by stimulating them with odors of varying
mean concentration (bias) and variance of the stochastically vary-
ing component (51). Neurons were recorded extracellularly from
the ab3 sensillum of Drosophila. The neuron analyzed here was
an ab3A ORN.

A stimulus of fluctuating ethyl acetate was delivered to the fly
antenna by blowing air over pure monomolecular odorants in liq-
uid phase. The gas concentration was determined by the flow
rate of air. For the recordings analyzed here, the variance of the
signal changed every 5 seconds around a constant mean, with
the variance switching a total of 60 times for 30 trials of “High σ”
and 30 trials of “Low σ” stimulation. These stimuli were Gaussian
distributed, generated by optimizing control signals to Mass Flow
Controllers which regulated airflows. The mean stimulus corre-
sponded to an odorant flux of approximately 2.5 µ mol/s. The
“High σ” condition corresponded to a standard deviation of approxi-
mately 0.75 µ mol/s, while the “Low σ” condition corresponded to
a standard deviation of approximately 0.3 µ mol/s. Identified action
potentials were binarized and downsampled to 1 kHz for analysis.
Odorant concentrations were also recorded at 1 kHz.

C.5 Rat somatosensory pyramidal neuron (Fig. 3F in the main
text). Response profiles of pyramidal neurons in rat somatosensory
cortex were measured using patch clamp recordings in brain slices
(52). The neuron analyzed here was recorded in current-clamp
whole cell configuration from the soma of a layer 5 regular spiking
pyramidal cell. Data were recorded at 5 kHz and low-pass filtered
at 2.5 kHz.

Current was modeled by an Ornstein-Uhlenbeck process with
different resulting means µ and standard deviations σL̇ow µ corre-
sponded to a mean of approximately 700 pA. Low σ corresponded
to a standard deviation of approximately 200 pA. High µ corre-
sponded to approximately 1800 pA. High σ corresponded to 300-
400 pA.

D. Filter Fitting Procedure

D.1 Data Preparation. First, spiking vector U = [u(1) . . . u(T )]
and stimulus vector Y = [y(1) . . . y(T )] were z-scored across
time to have 0 mean and unit variance. Lag matrices were then
constructed by stacking n-dimensional lag vectors together for the
whole length of the dataset, T :

Ulag =


u(1) u(2) . . . u(T − n+ 1)
u(2) u(3) . . . u(T − n+ 2)

...
...

. . .
...

u(n) u(n+ 1) . . . u(T )


where Ulag has dimensions n× (T − n+ 1). Similarly:

Ylag =


y(1) y(2) . . . y(T − n+ 1)
y(2) y(3) . . . y(T − n+ 2)

...
...

. . .
...

y(n) y(n+ 1) . . . y(T )


where Ylag has dimensions n× (T − n+ 1).

D.2 Dimensionality Reduction. To avoid overfitting and promote
smoothness of the filters, we projected the matrices Ulag and
Ylag onto a low-dimensional subspace. The stimulus matrix Ylag
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was projected onto the top N principal components, where N is
the number of principal components needed to capture 75% of
the variance of the data. If the singular value decomposition of
Ylag = WΣV⊤, then define S = ΣV⊤, and define YPCA as the
first N rows of S, i.e., YPCA has dimensions N × (T − n+ 1).

The spiking matrix Ulag was dimensionally reduced using La-
guerre polynomials, a family of orthogonal polynomials under the
exponential kernel. The first few Laguerre polynomials, Ll, are:

l Ll(z)
0 1
1 −z + 1
2 1

2 (z2 − 4z + 2)
3 1

6 (−z3 + 9z2 − 18z + 6)
4 1

24 (z4 − 16z3 + 72z2 − 96z + 24)
5 1

120 (−z5 + 25z4 − 200z3 + 600z2 − 600z + 120)

To define a natural time course for the filters and to ensure
orthogonality, the Laguerre polynomials were each multiplied by
a decaying exponential. Also a timescale τ was introduced, pro-
ducing functions Λl,τ (x) = Ll(x/τ) exp(−x/2τ). These func-
tions were calculated on values of x = 0, 1 . . . n − 1. For any
given timescale τ and number of polynomials p we assembled a
n × p matrix Λ, where Λi,j = Λi,τ (j − 1). We can now define
ULGR = Λ†Ulag, where ULGR has dimensions p × (T − n + 1)
and † signifies Moore-Penrose pseudo-inverse.

D.3 Computing Filters. Regressor weights were then calculated
as [K̃ff K̃fb] = UX̃⊤(X̃X̃⊤)−1, where X̃ = [Y⊤

PCA U⊤
LGR]⊤,

and X̃ has dimensions (N+p)×(T−n+1), K̃ff has dimensions
1 ×N , and K̃fb has dimensions 1 × p. Then the time-dependent
kernels were calculated as:

Kff = K̃ff W(1 : N, :)

Kfb = K̃fbΛ†

D.4 Parameter Search. The number of Laguerre polynomials,
p, and the timescale, τ , were chosen to minimize the recon-
struction error of the fit using a grid search, with the number
of polynomials restricted between 2 and 7 and τ chosen from
{1, 2, 4, 8, 16, 32, 64}ms.

For each parameter set, a 2-fold cross-validation was performed
by splitting the data into equal-sized halves. The kernels were com-
puted from data in the first half, and the reconstruction error was
calculated for the second half. The procedure was then repeated
by estimating from the second half and reconstructing the first. The
reconstructed spiking vector was computed as [K̃ff K̃fb]X̃.

Reconstruction error was defined as:

Error = ∥U − [K̃ff K̃fb]X̃∥2
2

∥U∥2
2

This estimation procedure was done individually for each trial. The
filters plotted in Fig. 3 in the main text represent the mean across all
trials, with dotted lines indicating mean plus or minus the standard
error of the mean. The number and length of trials for each dataset
in Fig. 3 in the main text were as follows:

E. Control Analyses

E.1 Mean Firing Rate. In the fly H1 dataset spike rates decrease
considerably in darker conditions, so we performed supplementary
analyses to rule out the possibility that the change in filter shape is
simply a consequence of a different firing rate. We repeated the

Trials Trial Length Time Step Maximum Shift*
2B (Dark) 135 5000 2 ms 100 data points
2B (Mid) 135 5000 2 ms 100 data points

2B (Light) 135 5000 2 ms 100 data points
2C (Low) 8 3000 1 ms 100 data points
2C (High) 8 3000 1 ms 100 data points
2D (Bar) 62 8270 1 ms 200 data points
2D (Fish) 102 17705 1 ms 200 data points
2E (Low) 30 5000 1 ms 200 data points
2E (High) 30 5000 1 ms 200 data points

2F (Each Condition) 8 2375 1 ms 150 data points
Table 1. * Maximum Shift refers to the maximum number of time steps
that the stimulus is shifted when constructing the lagged stimulus
matrix.

analysis used in Fig. 3 in the main text for bright segment of the
dataset while keeping only those data where the number of spikes
in the lag vector were below a threshold (100 or 200 spikes/s).
Similarly, for the dark segment, the analysis was repeated while
keeping data points where the number of spikes in the lag vector
was above some threshold (100 or 200 spikes/s). As shown in
Fig. 8, the filter shape is determined primarily by belonging to the
dark/bright segment rather than by the firing rate. Therefore, this
control supports our assertion that the filter shapes adapt to the
stimulus statistics.

E.2 Sunrise and Sunset. A possible explanation for the change
in feedforward and feedback filters in the fly H1 dataset is that the
the effect was due to the elapsed recording time. To rule this out,
we repeated the analysis on a separate H1 recording performed
during the time around sunrise rather than sunset. The response
profiles were remarkably similar for periods of the experiment with
comparable light conditions, Fig. 9, indicating that the change in
filter shape is primarily due to an effect of environmental brightness
rather than recording time.

E.3 Effect of Z-Scoring Spike Trains. Spike trains with different
mean firing rates will be affected differently by z-scoring (the first
step in Data Preparation). Time bins with spikes will take on
larger values at low rates than at high rates. This disparity in the
magnitude of the non-zero components of the spike train may affect
the shape or scaling of the estimated filters. To control for this, we
re-ran the fitting procedure for all datasets while not z-scoring the
spiking vector U, Fig. 10. The filter shapes and differences across
conditions are extremely similar to those obtained with z-scoring,
aside from a scaling factor for the feedforward filters.
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Fig. 8. Blowfly H1 feedback filter shape is primarily determined by the statistics of
sensory stimuli (background luminance) rather than the H1 firing rate. Even when we
analyze data subsets from the bright background experiment with firing rate lower than
that in data subsets from the dark background experiment, the difference between
the filters is qualitatively similar to Fig. 3B in the main text.

Fig. 9. Changes in Blowfly H1 feedforward and feedback filters are due to changes in
environmental brightness, not overall recording time. The above filters were obtained
from a dataset recorded during sunrise, in which the Dark condition came first,
followed by Mid and then Bright. This is in contrast to the analyses in Fig. 3B which
was recorded during sunset, in which Bright came first, followed by Mid and then
Dark. The changes in the filters are qualitatively the same between these conditions,
indicating that this is driven by the environmental brightness and not an artifact of
overall recording time.
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Fig. 10. Estimated filters without z-scoring the spiking vector u(t) are qualitatively similar to the ones with z-scoring, Fig. 3, in the main text. Naming and coloring conventions
are as in Fig. 3 in the main text. Feedforward filters in F were not substantially different from those obtained using the Z-scored data.
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