
Article https://doi.org/10.1038/s41467-025-56081-9

Syntalos: a software for precise
synchronization of simultaneous multi-
modal data acquisition and closed-loop
interventions

Matthias Klumpp 1, Lee Embray1, Filippo Heimburg1, Ana Luiza Alves Dias2,
JustusSimon 1,AlexanderGroh 1,3,AndreasDraguhn 1,3&MartinBoth 1,3

Complex experimental protocols often require multi-modal data acquisition
with precisely aligned timing, as well as state- and behavior-dependent inter-
ventions. Tailored solutions are mostly restricted to individual experimental
setups and lack flexibility and interoperability. We present an open-source,
Linux-based integrated software solution, called ‘Syntalos’, for simultaneous
acquisition and synchronization of data from an arbitrary number of sources,
including multi-channel electrophysiological recordings and different live
imaging devices, as well as closed-loop, real-time interventions with different
actuators. Precisely matching timestamps for all inputs are ensured by con-
tinuous statistical analysis and correction of individual devices’ timestamps.
New data sources can be integrated with minimal programming skills. Data is
stored in a comprehensively structured format to facilitate pooling or sharing
data between different laboratories. Syntalos enables precisely synchronized
multi-modal recordings as well as closed-loop interventions for multiple
experimental approaches. Preliminary neuroscientific experiments on mice
with different research questions show the successful performance and easy-
to-learn structure of the software suite.

Many experiments in modern neuroscience aim at linking different
system levels (e.g., cellular, network and behavioral) and modalities
(e.g., electrophysiological and imaging data)1–3. Such parallel record-
ings make it necessary to integrate data from different acquisition
systems4,5. A vital requirement for correct analysis and interpretation
of results is the precise alignment of these heterogeneous data, often
at a millisecond time scale6. However, data integration and synchro-
nization has remained a major challenge. Several programs have been
developed as generic tools for data acquisition and instrument control
(e.g., LabVIEW) or as more specialized tools for behavioral experi-
ments (e.g., ANY-Maze or Noldus EthoVision XT, and Bonsai as an

open-source program; see Supplementary Table S1). However, given
the increasing complexity and diversity of experimental designs, the
need for a general-purpose, easy-to-use and open-source solution
remains. At present, precise synchronization of heterogeneous data
streams remains a major problem, especially for long observation
periods and if no external synchronization signals can be used. Key
requirements for a precise and versatile data acquisition systemare: (1)
integration of multi-modal data from behavioral, imaging and elec-
trophysiological measurements; (2) consistent and accurate timing of
in- and outputs over prolonged periods; (3) versatile and user-friendly
implementation of newdata sources or actuators; (4) storage of data in

Received: 5 January 2024

Accepted: 6 January 2025

Check for updates

1Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany. 2Brain Institute, Federal University of Rio Grande
do Norte, Natal, Brazil. 3Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany.

e-mail: mboth@physiologie.uni-heidelberg.de

Nature Communications | (2025) 16:708 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2981-043X
http://orcid.org/0000-0003-2981-043X
http://orcid.org/0000-0003-2981-043X
http://orcid.org/0000-0003-2981-043X
http://orcid.org/0000-0003-2981-043X
http://orcid.org/0009-0008-0777-1226
http://orcid.org/0009-0008-0777-1226
http://orcid.org/0009-0008-0777-1226
http://orcid.org/0009-0008-0777-1226
http://orcid.org/0009-0008-0777-1226
http://orcid.org/0000-0002-5308-5971
http://orcid.org/0000-0002-5308-5971
http://orcid.org/0000-0002-5308-5971
http://orcid.org/0000-0002-5308-5971
http://orcid.org/0000-0002-5308-5971
http://orcid.org/0000-0002-6243-5582
http://orcid.org/0000-0002-6243-5582
http://orcid.org/0000-0002-6243-5582
http://orcid.org/0000-0002-6243-5582
http://orcid.org/0000-0002-6243-5582
http://orcid.org/0000-0003-1847-9796
http://orcid.org/0000-0003-1847-9796
http://orcid.org/0000-0003-1847-9796
http://orcid.org/0000-0003-1847-9796
http://orcid.org/0000-0003-1847-9796
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56081-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56081-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56081-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56081-9&domain=pdf
mailto:mboth@physiologie.uni-heidelberg.de
www.nature.com/naturecommunications
litexChu

litexChu

a widely usable format and comprehensive file structure for open
access. At present, these properties are difficult to achieve with
existing tools for users without advanced programming skills.

We therefore developed a highly versatile system for parallel data
acquisition and processing which meets the requirements of multi-
modal experimental settings. A key feature of the system, called
‘Syntalos’, is that timestamps from all data sources are aligned to one
globally shared Master clock. Timestamp divergences between indi-
vidual devices are continuously detected and corrected for, ensuring
precise synchronization over several hours. Analysis and data inter-
operability are facilitatedby a directory structure combiningdata from
different sources with their metadata and using the same formats for
similar types of data. These features are implemented into the core of
the software such that they are shared between all data sources or
online data processing functions, facilitating implementation of new
modules via intuitive application programming interfaces (APIs). For
features requiring high computing power and very precise timing/low
latency, a C++ API exists, while items with less tight requirements can
be implemented via an easy-to-use Python API. A wide range of com-
monly used input sources have already been implemented into
the default version of Syntalos, including a module for electro-
physiological recordings (Intan RHX, Intan Technologies, Los Angeles,
California), in vivo-calcium imaging (UCLA Miniscope, Los Angeles,
California) and various video cameras (see methods section). Closed-
loop interventions are supportedby anArduino input/output interface
which is custom-programmable in Python and yields latencies of
2–6ms. For lower latencies in the hundred-microseconds range, Syn-
talos also has a user-friendly way to execute MicroPython code on
dedicated microcontrollers. Furthermore, most pre-existing Python-
based algorithms or analysis tools can be implemented as additional
modules with little to no code changes, running in their own, isolated
virtual environments. Here we outline the general architecture and
properties of Syntalos, and we demonstrate its efficacy and reliable
timing in a typical experimental setting. Syntalos provides a versatile
solution to the serious problem of data synchronization and integra-
tion, and it facilitates exchange of data and analytical methods
between laboratories.

Results
A major challenge in neurophysiological studies is to synchronize
individual recording components (e.g. camera and electrophysiology
recordings). Accurate and continuous signal alignment is a pre-
requisite for establishing correct relationships between neurophysio-
logical and behavioral data. To systematically explore the impact of
correct signal alignment on the interpretation of neurophysiological
data we recorded time-sensitive neurophysiological data in a sensory
discrimination experiment, using Syntalos (Fig. 1A). In this experiment,
neuronal spike patterns are recorded in the somatosensory cortex
while mice sample apertures of varying widths (narrow, wide) with
their whiskers, which are recorded with a high-speed camera. Spikes
and whisker touches were originally optimally aligned by Syntalos. We
then arbitrarily de-synchronized both signals, simulating a systematic
time-shift between both recording devices during the course of the
experiment. We then asked how this temporal misalignment affects
the prediction of stimuli (slit width) from the simultaneously recorded
spike trains (Fig. 1B).

If the alignment between high-speed video images and electro-
physiological signals is incrementally shifted by 1ms per second
(leading to ~1 s time shift over the course of a 960 s long experiment),
the prediction accuracy of the classifier drops from nearly 100% to
near chance level (Fig. 1B). At the same time, the number of units
whose firing behavior correlates with the width of the aperture drops
from 65% to 17%. This example highlights the importance of con-
tinuously synchronizing devices to avoid cumulative timing errors. In
many cases, synchronization is done exclusively by flashing LEDs at the

beginning of the recording, but then not updated to not disturb the
animal. In other cases, devices are only activated for short periods
during the course of the ongoing experiment, again requiring regularly
updated synchronization for each recording period. This is the case in
the present example (Fig. 1A, B)where the high-speed cameras are only
activated for short periods to keep the amount of stored data low
(Fig. 1C). In summary, correlative measurements of physiological and
behavioral parameters require precise temporal alignment of record-
ing devices throughout the whole experiment. Syntalos supports such
continuous updating of time for multiple recording devices or actua-
tors, as shown in the present experiment (Fig. 1A–D)4,7.

General architecture
In Syntalos, different devices (e.g., amplifiers, cameras, gates, food
dispensers etc.) are conceptualized as distinct ‘modules’ with input
and output interfaces. Amodule can be thought of as a physical device
(e.g., an amplifier) that processes a data stream and then sends it
elsewhere. Modules are connected using virtual ‘wires’ (Supplemen-
tary Fig. S1A). This abstraction allows flexible support of any experi-
mental design in software, using tailoredmodules for data acquisition,
processing, storage or operation of actuators. Typically, each appa-
ratus or online analysis processwill correspond to a singlemodule, but
modules may also be created as combinations of multiple processing
steps for the convenience of the user.

With this, Syntalos provides a framework which runs and coor-
dinates individual modules (Fig. 2). The modules are dedicated to
defined work packages, such as acquiring, processing or storing data
or interacting with the behavioral setup. The Syntalos engine provides
a declarative API (application programming interface) for themodules
to interface with the program. Modules can be written in C/C++ or
Python. Support for further programming languages (e.g. C#, Rust or
Java) can be added via Syntalos’ out-of-process module interface, as
long as the language in question supports interfacing with C. Several
complex tasks (synchronization, threading, data storage etc.) are
handled by the Syntalos engine, such that modules only need to
implement code for their dedicated purpose instead of dealing with
low-level complexity. Besides being user-friendly, this design enforces
uniform handling of recurring tasks such as data storage or timestamp
handling between modules.

Using C/C++ for modules allows Syntalos to run most operations
at native speed, without any overhead of an interpreted scripting
language or a just-in-time (JIT) compiler8. Fast reaction times are also
supported by highly parallel processing through multi-threading,
making use of the multiple cores available on modern CPUs9. Notably,
thread execution time is organized by the Linux operating system
scheduler which has been optimized to give tasks their fair share of
CPU time10–12. In addition, Syntalos can advise the scheduler to mark
tasks for preferential processing, or assign specific CPU affinities for
latency reduction. The scheduler also ensures that one highly
demanding task cannot starve other tasks for CPU resources. Critical
procedures (e.g. data acquisition; Fig. 2A “Module A”) can be assigned
to dedicated threads at a higher priority, such that they run with the
least amount of interruptions. Other, less time-critical procedures are
variably assigned to threads which can be shared between different
tasks, using an event-based system to call individual subroutines
(Fig. 2A, “Module B”, “Module C”). Thread assignment is done by the
Syntalos engine based on preferences set in the module’s code
(available at https://github.com/syntalos/syntalos).

As analternative toC/C++,modulesmay alsobewritten in Python,
a widely used high-level programming language13. This allows simple
integration of new modules by a wide range of users, reusing existing
code or creating basic scripts in Python. Such additional modules run
outside of the main Syntalos process, using a dedicated Python virtual
environment without interfering with other modules or with the main
application. However, in such cases data must be serialized to be sent

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 2

https://github.com/syntalos/syntalos
www.nature.com/naturecommunications
litexChu

litexChu

litexChu

to the external Python adapter process, and subsequentlyde-serialized
for useby the Pythonprocess. The sameapplies in reverse fordata sent
to Syntalos by a Python module (Fig. 2A, see “Module D”). These
additional steps, while autonomously organized by Syntalos, slow
down Python-written modules slightly and increase latencies14,15 (see
below). To increase robustness and ensure that amisbehavingmodule
will not crash the whole recording, the method of running as separate
process is also available to modules written in other programming
languages via the libsyntalos-mlink shared library.

Modules have ‘ports’ to receive data input and to provide output
data toothermodules. Ports are visualizedonan intuitiveGUI, and inputs
and outputs of modules can be connected by the user by drawing lines
between ports of the same type (Supplementary Fig. S1). Each port can
only handle one specified data type, e.g. image frames or table columns.
Syntalos supports several pre-defined data types (see Supplementary
Table S1). New types can be added by modifying the Syntalos engine,
which requires understanding of Syntalos’ C++ codebase.

During operation, the same data may be used by different mod-
ules, running in different threads. In order to safely pass data between
threads and to avoid read/write conflicts, a lock-free queue imple-
mentation with a single writer and a single consumer is used16. When a
module creates data, it will write them into the queues of all connected
modules, which then use these data once they need it (Fig. 2A; data
streams between threads). This organization avoids additional mem-
ory allocations in non-Pythonmodules. Once a data block is generated
by a module, it is considered immutable and must not be modified in-
place again. Thus, other modules can read from, but not write to the
respective data block. An output port of a module is internally repre-
sented by a ‘data stream’. A module can request data from a given
output by connecting to it via a process called ‘subscribing’. Many
modules can subscribe to the same data stream, but onemodule input
port canonlybe subscribed toone streamata time (streams cannotbe
merged). During an experiment run, the Syntalos engine continuously
monitors all module connections. A user warning is generated if a

Fig. 1 | Example experiment and modular design of Syntalos. A Behavioral task,
in which mice touch apertures of varying widths with their whiskers. Whisker-
aperture interactions are recorded with a camera and electrophysiological data is
recorded with a chronic tetrode array. Single unit spike patterns are identified
offline. Spiking is aligned to the whisker touch and a classifier is trained with the
spiking of several single units to predict the animal’s behavior. B If whisker touch
and spikes are misaligned by systematic incremental shifts of 1ms per second
(leading to 0.5 s (middle panel) or 1 s (right panel) over the course of a 16min long
experimental session), the prediction accuracy drops to near chance levels. Addi-
tionally, the number of units whose firing correlates withwhisker touchdrops from
65% to 17% (pie charts, lower panels). Error bands of decoding accuracies indicate
the standard error of themean (SEM). Box plots represent the decoding accuracy in
the time window ranging from trigger onset to 400ms after trigger onset, with the
respective values for each condition as median [lower quartile, upper quartile;
whisker minimum, whisker maximum]: No time shift: 100 [99.12 100; 98.5 100];
0.5 s time shift: 83 [63.3886.12; 53.5 92.5]; 1 s time shift: 57 [52.62 60.88; 46 66]. Data
is shown for 413 barrel cortex units (pooled from 6 animals). C Flowchart

illustrating the logic of the behavioral-physiological experiment. This logic can be
programmed in Python by the experimenter within the Syntalos Python Script
module. The Python module can receive data from and send commands to the
Firmata I/O module, which is an implementation of the Firmata serial interface API
to ultimately control an Arduino board which reads the actual data from sensors
and commands any connected effectors based on the rules programmed in the
Python script. D Schematic representation of a complex example experiment.
During the experiment, Syntaloswill acquire amultitude of data, andperform some
online analysis. The animal is recorded via a camerawhile it traverses amaze or any
other behavior setting. The video recording is handled by a Syntalos camera
module, which produces frames that are analyzed by a tracking module for their
tracking information which is finally saved by the table module for later offline
analysis. Electrophysiological data can be acquired by a module dedicated to the
Intan hardware, while a Miniscope pipeline can be set up using the Miniscope
module and aVideoRecordermodule to store the acquired frames for later calcium
activity analysis. Icons/logos reproduced with permission (see
Acknowledgements).

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 3

www.nature.com/naturecommunications
litexChu

module cannot read data fast enough so that data queues between
modules are getting too large and the computer is in danger of running
out of memory.

Program behavior during experiment
When a new module is added to an experiment configuration, it
communicates a set of basic information to the Syntalos engine, such
as the ports which it supports, or threading requirements. Once the
experiment is started, the module runs through a series of states
(Fig. 2B): First, the Syntalos engine sets up the threading model and
basic data structures, then an execution order for all modules is
planned, such that modules generating data are started before mod-
ules consuming these data. Modules will then be triggered to enter the
first ‘prepare’ stage inwhich they initialize any hardware, communicate
their time synchronization strategy and set runtime-specific metadata
on data streams (such as the expected bit-depth of a camera recording
or expected headers of a CSV table). When the module is ready, it will
transition into the ‘ready’ state and communicate this information to
the engine. The engine will subscribe all input ports to data streams
according to the user’s configuration. Once all modules have signaled

that they are ‘ready’, the engine will emit a ‘start’ signal, and modules
transition into a ‘running’ phase where they start to process or emit
data. The Master clock is only available once the ‘start’ signal has been
sent. This strategy ensures that modules start almost simultaneously,
within their technical limitations. The engine continuously monitors
the state of all running modules and data queues, and provides mod-
uleswithMaster clock timestamps (seebelow).Once the user stops the
experiment, the engine emits a ‘stop’ signal and triggers modules to
finish their data processing and data acquisition tasks. Remaining data
left in queues will still be processed for a few seconds. If a module fails
(e.g., if a device is disconnected) during an ongoing measurement, all
data will be saved and the experiment run is stopped. However,
modules can be exempted from this ‘stop on failure’ behavior in the
GUI. Once all modules are ‘stopped’, the Syntalos engine will finalize
the EDL (Experiment Directory Layout) metadata and clean up system
resources which have been used for the data acquisition run (Fig. 2B).
For details on EDL and comparison with other data formats see Sup-
plemental Information “Data Storage & Formats” and https://edl.
readthedocs.io/latest/intro.html). With these features, Syntalos pro-
vides a user-friendly framework for integration of multiple modules

A

B

RunningReadyIni�alize Prepare Start Stop

⸰ Supported port info
⸰ Module capabili�es

Ini�alize
Set up data
structures

Master Timer

Data
Finalize

Experiment
Details

⸰ Stream metadata
⸰ Time sync strategy

informa�on

Wait for all modules
to become ready

- Subscribe module
to streams

Syntalos Engine

⸰ Data
⸰ Status Info

Experiment
Data Storage

Master
Timestamps

Device

- Setup threads
- Plan module ordering

- Store data
- Monitor module

status

- Finalize all state
- Write final metadata

Syntalos Module

Opera�ng System

Module A - UI

GUI for Display
and/or Module
Se�ngs

UI Thread
Syntalos Process

Event Scheduler

Thread 1 Thread 2

Module A
Module B

Data Stream

Module C

IPC Serializer

Thread 3

Module
Proxy

IPC Deserializer
Syntalos Worker Process

Module D

Python 3+
Interpreter

Data Processing
Func�ons

Data Storage
Func�ons

User-Wri�en
Python Script

DAQ Device

Provides

Provides

Interfaces

UI EventQueue
Data Stream

Transmission

Calls

Calls

Runs

Interfaces

D
ata Stream

Fig. 2 | Architecture of the Syntalos engine andmodule run cycle. A Shows how
Syntalosmanagesparallelismwith threads betweenmodules.ModuleA runs in part
in the UI thread to display for example a settings panel, and in part in a Syntalos
worker thread (Thread 1) to acquire data from a DAQ device. This data is sent via a
data stream to Module B, which is combined together with Module C in a different
worker thread (Thread 2). Those twomodules share the time provided by the given
thread and are called by the event loop of Thread 2 at selected intervals. They also
use a data stream tomove data between twomodules, as the stream itself does not
care whether themodules live in the same thread. TheDAQdata is also streamed to
Module D, for which Thread 3 serializes communication for IPC (inter-process
communication) with the actualModuleD, which is written in Python and executed
as a separate child process outside of themain Syntalos process.B Shows the states

amodule goes throughduring an experiment run, from left to right. The upperpart
(“SyntalosModule”) depicts the actions themodule itself executes and the states it
is in, while the lower part (“Syntalos Engine”) depicts the tasks Syntalos itself per-
forms. The vertical arrows show communication between the two sides. Initially,
when the module is created (“Initialize” phase) it submits basic information (which
ports it supports etc.) to the engine.When the user runs an experiment, allmodules
set up their required data structures and devices in a prepare step, signal readiness
to the engine and then are started at once. At that point they will also get access to
the master timer, to acquire master timestamps. During the run, they will store
experiment data and are monitored by the engine, until the experiment is even-
tually stopped and the modules finalizes its data and possibly state of a device that
it manages. Icons/logos reproduced with permission (see Acknowledgements).

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 4

https://edl.readthedocs.io/latest/intro.html
https://edl.readthedocs.io/latest/intro.html
www.nature.com/naturecommunications
litexChu

litexChu

and secures precise synchronization of all active processes during an
experiment.

Time synchronization
To ensure synchrony between data-acquiring modules, their time-
stamps are aligned to a single clock. Syntalos used Linux’ CLOCK_-
MONOTONIC clock type, which is usually based on the system’s CPU
timestampcounter and hasmicrosecondprecision17. ThisMaster clock
is considered to be accurate by definition. All secondary clocks, for
example those from data acquisition systems, will be compared to the
Master clock to determine and correct for their offset (Fig. 3A). Within
Syntalos, any data blocks are always paired with their respective
master timestamps, so that all data processing modules receive
accurate time information for any incoming dataset.

To maintain synchrony, Syntalos provides modules with Syn-
chronizer constructs, which quickly quantify and correct the offset of a
secondary clock to the Master clock. Syntalos contains two different
synchronizers, one for devices providing timestamps and one for
devices providing a continuous data counter with known frequency.
Modules can use different strategies to react to time divergences: i)
write the offset information to a special tsync binary file, ii) correct the
received timestamp to match the master time, iii) adjust the clock /
data acquisition (DAQ) speed of the external device, iv) use a combi-
nation of these strategies (Fig. 3A). Which method is chosen depends
on whether the external device supports clock adjustments, and
whether the retrieved data will be stored in a format supporting error-
corrected timestamps. If the storage formatdoes not support adjusted
timestamps, a tsync time synchronization file is written, which enables
simple re-synchronization of timestamps during offline data proces-
sing. Some devices provide neither a timestamp nor a data counter.
For strictly polled instruments, Syntalos then takes the mean of the
Master clock’s time before request for data and response as time-
stamp. For devices with buffers, Syntalos calculates the apparent
recording time backwards, using the time of data receival and the fill
state of the buffer.

The buffers of DAQ devicesmay confer delays based on hardware
properties, limited speed of data transmission or varying activities of
the operating system12,18,19. Thus, the time points when data is read
from the DAQ buffer may not accurately reflect the time of data gen-
eration. Therefore, internal timestamps of all DAQ devices are con-
tinuously compared with the Master clock. To robustly correct time
divergences between the Master clock and a device clock, Syntalos
calculates the moving mean and variance of differences between
master and device clock timestamps. The number of time points used
for calculating mean and variance are set for each module within the
code provided by the module author, either as a fixed value or as a
dynamically adjusted parameter, e.g. depending on sampling fre-
quency. If no value has been specified, the number is defined by a
formula, which has secured good synchrony between devices during
test runs:

n= f +
1

0:01 + f
250

� �2

0
B@

1
CA*10

2
6666

3
7777
ðf = sampling frequencyÞ

Syntalos’ time synchronization algorithm consists of two phases,
initialization and continuous updating.When an experiment is started,
the differences between the timestamps of the peripheral device and
theMaster clock are calculated. From this, themedian (with an added,
module-defined tolerance range) and variance (with a fixed tolerance
range) are obtained. These values are used as reference for
synchronization during the subsequent continuous updating phase.
In this phase, mean and variance are calculated for each sliding
window, and compared to the reference values. Outliers will increase
the standard deviation, typically without major alteration of the mean

– in this situation, the device timestamp will be adjusted to match the
expectedMaster clock timestamp. If only themean value of timestamp
differences exceeds the tolerance range, time values are corrected,
either by shifting new incoming data timestamps or by recording the
time divergence in a tsync file. Additionally, devices allowing external
reset of their clock can be set to the Master clock by using the
respective device API (Fig. 3A). The maximum tolerances set by
modules are stored as metadata.

Evaluation of time synchronization
We quantified the performance of Syntalos by measuring the syn-
chronization of different optical and electrophysiological recording
devices: three different industrial cameras from The Imaging Source
and Basler, a UCLA Miniscope20, a standard webcam, an Intan elec-
trophysiology amplifier, a Raspberry Pi Pico running Syntalos-
provided MicroPython code and the Arduino open-source electro-
nics platform running Firmata, a generic protocol for communicating
with microcontrollers from a host computer. External events were
provided as rhythmic TTL pulses from a signal generator (see Meth-
ods). These pulses were used to generate an optical signal via an LED
and voltage inputs to the Intan, Arduino, or Pi Pico devices (Fig. 3B).
Time deviations between the recorded data and theMaster clockwere
measured for a running time of >24 h (Fig. 3C, D). Note that all devices
show a timedrift of ~750ms after 24h due to a systematic difference in
timing velocity between the signal generator and the internal Master
clock. The relative timing between devices, however, was stable over
the course of the experiment. In the experiment, the original time-
stamps from the Intan system show a significant drift (light green line
in Fig. 3C, D) while timing was well aligned after synchronizing the
signals by the Master clock (dark green). Together, these data show
that heterogeneous devices are reliably synchronized by the Syntalos
algorithm, even over long recording periods. At higher time resolution
(Fig. 3E) significant timing differences between the different devices
become visible, reaching around 40ms in case of the UVC webcam.
These deviations result from the low video image sampling frequency
(25 Hz). Notably, however, the mean deviation stays stable, i.e. there is
no cumulative timing difference effect (compare left and right panels
in Fig. 3E; note the resetting ‘jumps’).

One potential confound is variation of theMaster clock speed due
to temperature changes caused by varying computational load or
fluctuations in the environment. To assess whether this has an influ-
ence on device synchrony, we analyzed the time difference of recor-
ded timestamps to a linear regression of the data shown in Fig. 3D.
Indeed, the timestamps of the Master clock showed fluctuations
around the linear interpolation (Fig. 4A). In linewith low sampling rate,
the time differences between different external devices and theMaster
clock showed considerable variations on an event-to-event base, due
to aliasing effects (Fig. 4B). The median deviation, however, was con-
stant, even over long recording periods of >24 h (Fig. 4C). Thus, all
devices stay in good synchrony with the Master clock despite fluc-
tuations of the absolute speed.

Next, we looked at the underlying synchronization process with
single timestamp resolution. For this, wedivided theMaster clock time
interval between two tsync control points by the number of samples
acquired from the Intan recording system between these time points.
Ideally, this should result in a sampling interval of 50 µs (with sampling
rate set to 20 kHz). Indeed, the measured values varied within ±5 ns
(corresponding to ±0.01% of the expected sampling interval;
Fig. 4D, E). The time interval for correction of external device times by
theMaster clock has been set to aminimum of 24 s, but may be longer
if deviations are smaller than the threshold value described above.
Measured correction intervals for the Intandeviceweremostly 24 s but
could reach values ofmore than 48 s (Fig. 4E, second panel). Together,
these data show stable synchronization of devices over long periods
of time.

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 5

www.nature.com/naturecommunications
litexChu

litexChu

litexChu

litexChu

litexChu

litexChu

litexChu

litexChu

litexChu

Fig. 3 | Timestamps assigned by Syntalos for various devices. A Flow diagram of
how Syntalos will adjust new timestamps to fall back in line with previous ones,
even if two clocks of separate devices diverge in time [detailed explanation is in
results text]. B Experimental setup to test the performance and accuracy of syn-
chronization. In this configuration, various devices were used and synchronized by
Syntalos: a standard USB UVC (Universal Video Capture) webcam (25Hz sampling
rate), a scientific camera (Basler, 25Hz sampling rate), two identical scientific
cameras (The Imaging Source, 60Hz sampling rate), one controlled by a dedicated
Syntalos module (TIS Camera), the other using the generic GenICam module (TIS
GenICam), a UCLA Miniscope (sampling rate 30Hz), an Intan RHD2000 electro-
physiology USB interface board (sampling rate 20 kHz), an Arduino Firmata I/O
serial interface connected via USB, and a Raspberry Pi Pico microcontroller con-
nected via USB. The TIS Camera, UVC webcam and the Miniscope have no own
independent clocks for timestamping individual frames and are time-synchronized
by Syntalos based on driver timestamps. The Arduino and the Pi Pico devices are
not time-synchronized in a strict sense but obtains their timestamps directly from
Syntalos’ownMaster clock. The IntanUSB interfaceboard is time synchronized but

runs its own internal clock. For the experiment, a signal generator produces 3.3 V
positive, 240ms long square waves every second. This signal is directly fed into the
Arduino, the Pi Pico, and Intan digital input port for sampling, while the cameras
record anLED connected to the same signal line.CRecorded relative time points of
the frames (or samples) in which the voltage signal produced by the CED board (or
the LED light) is detected. D Time deviation of the recorded timestamps from the
expected time points. Note that the external signal generator clock of the Intan
device is slightly slower than the other clocks which adds up to an error of
approximately 150ms after 24h of recording. Additionally, the Intan internal clock
is also faster than the computer clock. The step-like characteristics of the UVC
webcamand thefluctuating signals from theotherdevices are due to the respective
frame rates and aliasing effects. Note that due to temperature fluctuations at the
beginning of the recording, the computer clock fluctuates with respect to the Intan
clock. E Close-up of an early time point (indicated by 1 in panel D) and a late time
point (indicated by 2 in panel D) of the recording. Icons/logos reproduced with
permission (see Acknowledgements).

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 6

www.nature.com/naturecommunications

Despite the precise internal synchronization, technical limita-
tions of peripheral devices may add constant offsets which are not
visible to the clock synchronization algorithm. For example, the
moment of data acquisition in a video camera may differ by a con-
stant time lag from the moment of data readout and timestamp
assignment (Fig. 3C). Such constant offsets are, by their nature, not
visible to Syntalos. Correcting them requires an independent mea-
surement, after which the constant offset value of each device can be
subtracted for future measurements. We assessed this systematic
error by measuring offsets of six different devices, using the device
with the highest sampling rate (the Intan system) as temporal

reference (Fig. 5). Again, an external signal was provided by a TTL-
triggered LED pulse (1 Hz), and deviations from the time of the light
signal were measured for ~15minutes (Fig. 5A). Indeed, the devices
showed considerable offsets of up to 40ms (Fig. 5B). Individual off-
sets varied strongly due to aliasing between the devices’ sampling
rates and the 1 Hz external signal. Mean values of the time lags reflect
the systematic error caused by timestamp assignment during data
readout. Repeating this experiment for 60 times revealed that this
systematic error is constant (within fewms) for each device. Hence, it
can be measured and corrected for a specific experimental config-
uration (Fig. 5B, C).

Fig. 4 | Synchronization performance. A Fluctuation of the mean detected onset
times. Signals in panel D of Fig. 3 were low-pass filtered and deviations from the
linear interpolation between the first 10 s to the last 10 s of recordings are dis-
played. Note that the devices (except from the original, uncorrected Intan data)
fluctuate together, indicating that synchronization is accurate even if the internal
clock speed varies. This variation is likely due to a combination of temperature
shifts and workload differences of the computer. B Timestamps of the various
devices relative to the low-pass filtered timestamps of the TIS camera (fastest
device directly controlled by Syntalos). Left panel is from the time regionmarked as
‘1’ in panel A and right panel from the time region marked as ‘2’. C Distributions of
the data depicted in B. The timestamps of the devices stay within their expected
range i.e. within their frame rate limits. Intan timestamps fluctuate within a full
range of 2ms which are the limits of the Syntalos synchronization margin. Mean

value deviation stays well below 1ms (see Results section).D Sampling intervals of
the Syntalos-synchronized Intan recordings depicted over recording time. Con-
stant sampling intervals are assignedby Syntalos for periods of ≥24 s basedon time
differences between the computer clock and timestamps from Intan. Assigned
sampling intervalsfluctuate around the expected value of 50 µs (i.e. 20 kHz, dashed
gray line) by ±5 ns. Mean value is 49.9998 µs (red line), due to slight differences in
clock speed between the computer and Intan. E Quantification of the corrected
sampling intervals. Left panel: distribution of the assigned sampling intervals for
the data shown in D. Right panel: distribution of the duration of the step-wise
correction of sampling intervals. The minimum duration for which constant sam-
pling intervals are assigned is 24 s, a value determined by Syntalos based on the
device type and sampling frequency.

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 7

www.nature.com/naturecommunications
litexChu

litexChu

For closed loop experiments, latency is an important measure of
how fast the system can react to a certain stimulus. As a test, we
devised a simple experiment where a TTL pulse is simultaneously sent
to the Intan device and an Arduino Uno. The signal at the Arduino is
processed by a Python module within Syntalos, which, as soon as it
receives the data, instructs the Arduino to send a new TTL pulse to the
Intan device, indicating that the original TTL signal was detected. The

Pythonmodule also records the timewhen it processed data in a table.
The time difference of the initial and the Arduino-generated pulse,
measured by the Intan device, reflects the roundtrip latency of Syn-
talos and the Pythonmodule. This value represents a realistic, but sub-
optimal scenario since a Python module (and therefore an external
process) was involved. Modules can also be written in C++ and be
loaded into Syntalos as shared library, sidestepping both Python and

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 8

www.nature.com/naturecommunications
litexChu

inter-process communication (IPC) latencies. For certain scenarios,
they can react much faster, but in this case the maximum speed is
mainly limited by the Arduino and USB communication itself, instead
of by IPC latency and Python (Fig. 5D, middle panel). The average
roundtrip latency was 4ms, with a maximum of about 6ms (Fig. 5D).
This is sufficient for most behavioral experiments. However, for cases
where deterministic fast reactions to events with sub-millisecond
precision are required, Syntalos can integrate and program micro-
controllers running MicroPython. For that, we used a Raspberry Pi
Pico, which receives a MicroPython script from Syntalos to perform
the same action as the Arduino. During the experiment, Syntalos
communicates with the Pi Pico to receive data processing times from
it. With this setup, test-runs achieved roundtrip latencies of <150 µs
(Fig. 5D, right panel). Alternatively, we recommend specialized hard-
ware and software that can provide real-time guarantees and can be
controlled by Syntalos (example experiment using our GALDUR board
in Fig. S4, with code available at https://github.com/bothlab/labrstim).

We compared the timing accuracy of Syntalos with that of Bonsai,
a widely used open-source system21,22 in behavioral neurosciences
(Supplementary Fig. S5). Several video cameras were kept in sync over
several hours by both systems, and closed-loop roundtrip latencies for
the Arduino were comparable. However, without external timing cues
or additional hardware, Bonsai was not able to synchronize the Intan
DAQ-board to the connected video cameras and the UCLA Miniscope
(time deviations were larger than 9 s after 22 h of recording). In addi-
tion, theMiniscope was running at a lower frame rate than set (18.9 Hz
instead of 30Hz). Moreover, timestamps assigned to the Miniscope
frames by Bonsai showed a high jitter, incompatible with the constant
intervals between frames. In summary, Syntalos outperforms Bonsai
due to its automatic, built-in time synchronization.

Application case
As an example to validate the capabilities of Syntalos, we performed a
learning task with mice in an M-maze23,24. In this hippocampus-
dependent paradigm, the mouse is supposed to visit each arm of the
maze one after another in order to receive a food reward. If one arm is
skipped, no reward is dispensed. When moving from one of the outer
arms towards the inner arm (inbound trial), correct choice depends
mainly on reference memory (rule learning: move inwards after visit-
ing anouter arm).When the animal ismoving fromthe inner arm to the
next arm (outbound trial) working memory is crucial, as the animal
needs to remember in which of the outer arms it has been in the
preceding trial (Fig. 6A, left panel and Supplementary Fig. S6 for the
logic diagram and Syntalos configuration). While the animal is per-
forming these trials, various behavioral and physiological parameters
can be measured. In our case, mice were equipped with a UCLA Min-
iscope to record calcium transients in hippocampal CA1 pyramidal
cells, and behavior was assessed by video-monitoring (for hardware
used, see methods section). For this experiment, pyramidal neurons
were intentionally labeled sparsely in order to make it possible to
separate them easily and to potentially identify them later using a

different microscope, after the animal was perfused and the lens was
removed. The sparse labeling was a specific requirement for post-
processing steps of this experiment, and does not reflect the norm
when performing CA1 recordings with Miniscope25.

Previous studies using the M-maze have been performed with
rats, which easily find the correct strategy24. We found that mice, in
contrast, learn the paradigm much more reliably if they are initially
guided to the correct arms. Therefore, we used custom-mademovable
gates for conditionally blocking access to the wrong arms. Sweetened
condensed milk was given as reward for correct choices. Gates and
dispensers were controlled by a Python module. After two days of
forced trials, the gates were removed and the mice were allowed to
move freely within theM-maze. Syntalos was used to record a video of
the behaving animal as well as live images of calcium activity (Minis-
cope) during the whole trial.

During the experiments Syntalos performed without any issues at
synchronizing the camera and the Miniscope as well as at controlling
the maze actuators (feeders and gates) and reading the animal’s
position and information from sensors like light barriers, the Minis-
cope orientation sensor and illumination sensor. Data analysis was
conducted on the Syntalos-generated data in its EDL layout, with cal-
cium activity being extracted as a postprocessing step using the Min-
ian toolbox26. Likewise, the animal’s behavior and position was tracked
offline usingDeepLabCut27. Learning performancewasevaluated using
bayesian analysis to estimate learning curves as described by Smith
et al.28. For the inbound trials, the mouse in our example already
learned the task after trial 19 on the first day (certainty >0.95 that the
mouse performs better than chance) and on its last day reached more
than 90%accuracy. For outbound trials, the animal needed longer time
and learned the task on the secondday at trial 32, and by the end of the
last day 5 performed correctly 80% of the time (Fig. 6A, graphs, right
panel). Multiple place cells were found and one that was specific to the
middle reward point is depicted in Fig. 6B–E as an example. The firing
behavior of this cell remained stable over multiple days. For this to
work, high temporal precision and alignment of the top camera images
(recording the animal’s position) and the calcium recordings by the
Miniscope was required and ensured by Syntalos. Using the uniform
EDL data structure, an automated pipeline was developed which
allowed extracting calcium- and position data from the recorded
images in a fully automated way immediately after the experiment was
completed. Due to the sensors in the maze itself, the animal’s daily
performance could also be visualized immediately and tracked in real-
time via Syntalos built-in plotting module.

In summary, Syntalos allows to trustily synchronize different
devices and thus to reliably and robustly detect complex correlations
betweenbehavior and single cell activity. The standardized EDL format
additionally facilitates fast and automatic analysis of data.

Discussion
Synchronization of different devices is a major challenge for complex
experiments in modern neurosciences. With Syntalos, we provide a

Fig. 5 | Estimated start time of the devices upon multiple starts of a Syntalos
recording. The same Syntalos project configuration is started 60 times and the
timestamps are evaluated over 10min.A Example plots for the first 150 stimuli of a
synchronization experiment. Times are depicted relative to the Intan time (highest
sampling rate). As Syntalos and the independent clock of the signal generator are
not synchronized, the first detected event occurs at a random time point (red
circle). Sampling rate of the devices are not exactmultiples of one second such that
the relative detection onset times shift over time and are reset when the difference
gets larger than one frame (especially well visible for the TIS camera and the UVC
webcam). The exact start time of the device by Syntalos can be estimated by
averaging the relative onset times (red line). B Scatter plots (left) and histograms
(right) of the estimated start times of the devices with respect to the Intan
recording (highest sampling rate). The start times of the different devices differ by

up to ~40ms. The jitter of the start times, however, is much smaller (~3ms) well
below the sampling intervals of the devices. C Sampling windows of different
devices for seven trials. Due to the correction of offsets (shown in B) all sampling
windows fall onto the correct time of a LED-emitted light signal (thin vertical line in
each trial). D Roundtrip latencies for closed-loop experiments. Left panel: Sche-
matic representation of the latency test. Signal generator sends an input pulse to
the Pi Pico or Arduino, respectively. After detection, an output pulse is generated.
The time lag between input- and output pulses is detected via Intan by Syntalos.
Right panels: Distribution of the input-output latency for the Pi Pico running
MicroPython, the Arduino board controlled by a Python script in Syntalos, and the
Arduino board controlled by amodulewritten in C++. Icons/logos reproducedwith
permission (see Acknowledgements).

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 9

https://github.com/bothlab/labrstim
www.nature.com/naturecommunications
litexChu

litexChu

litexChu

tool for integrating and synchronizing data acquisition pipelines and
closed-loop experimental manipulations. Our data show that Syntalos
guarantees timestamp synchrony for multiple types of hardware,
including devices which do not support external synchronization via a
clock pulse. Synchrony is stably maintained over prolonged periods of
>24 h. A frequent challenge is that many hardware devices used in
neuroscience experiments lack a dedicated input for precise timing by

an external Master clock. Syntalos provides a solution to this problem
by continuously measuring and algorithmically correcting timestamp
differences betweenperipheral clocks and theMaster clock.Moreover,
different devices can be easily incorporated and connected to form
complex data acquisition pipelines without extensive programming.

Compared to existing tools for data acquisition, such as ANY-
Maze (Dublin, Ireland), Noldus EthoVision XT (Wageningen,

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 10

www.nature.com/naturecommunications

Netherlands) or Bonsai (https://bonsai-rx.org/), Syntalos is the only
software that uses a statistical method for timestamp synchronization,
while the other solutions rely on TTL pulses and manual alignment or
dedicated hardware. This has the important advantage that some
widely used devices which do not have a TTL output or input can be
synchronized. For example, theUCLAMiniscope hasonly a TTL output
but no input. Therefore, depending on the combination of devices,
synchronization cannot be accomplished by TTL pulses and there will
be uncertainty as to whether timestamps are correct. This, of course,
additionally allowsour proposedmethod to be used by other scientific
disciplines where the exact synchronization of different data sources
plays a crucial role and hardware solutions are not possible.

Fromall recording programs, Bonsai comes closest to Syntalos, as
it supports multiple open-source hardware devices, is used for closed-
loop interactions, and is open-source itself. We therefore performed a
direct comparison between both programs. Syntalos outperformed
Bonsai in various aspects, mostly due to its independence from
external timing cues. This was, in our recordings, most apparent for
the Intan DAQ board and for the UCLAMiniscope (see Supplementary
Fig. S5). We clearly acknowledge the strengths of Bonsai, e.g. its gra-
phical programming capability and its good applicability in behavioral
experiments. Syntalos, however, meets the needs for precise syn-
chronization of a very broad range of data sources and devices, inde-
pendent from external cues and during long recording periods.
Several further features of Syntalos make it a particularly versatile and
user-friendly tool for multi-modal experiments, as shown in a sys-
tematic comparison with existing systems (Supplementary Table S4).

Syntalos relies heavily on multithreading. This design facilitates
quick reactions to new input events and prevents tasks being blocked
by each other over CPU resource demands. On the other hand, this
strategy can be computationally inefficient: CPU time may be used by
multiple threads even when these are idling, and CPU caches must be
updated whenever the operating system switches between threads.
These potential disadvantages were, however, no limiting factors for
Syntalos’ performance. To test for potential shortcomings, we per-
formed test-runs on old computing hardwarewith relatively slow CPU-
and memory-performance and did not observe problems with data
acquisition and synchronization capacities (see ‘SystemRequirements’
section in supplemental information). A further requirement is that
threads must synchronize whenever they access and overwrite the
same memory. We therefore used a lock-free queue for message pas-
sing. Thisminimizes the amount of cycles wastedwhen a large amount
of data is transferred between Syntalosmodule threads. Efficiencywas
further optimized by reducing memory allocations during data trans-
fer, thereby reducing additional latencies.

Alternative solutions to our multithreading approach are asyn-
chronous parallelization paradigms, e.g. reactive programming or
event-based programming29,30. This design optimizes CPU usage by
reducing idle time and is a lotmore efficient. It bears the risk, however,
that tasks block each other for prolonged periods which would com-
promise precise timestamping or synchronization. Thus, such
approaches are ideal for processing multiple similar or identical tasks,
especially when CPU capacity is limiting. Typical experimental setups

in neurosciences do not meet these criteria and, hence, allow to make
use of a more threading-focused design.

Behavioral or optogenetic experiments make increasing use of
real-time interventions. Behaviorally relevant time scales are usually in
the range of tens of milliseconds (with rare exceptions like the jump
takeoff of Drosophila melanogaster which happens in 5ms), setting
relatively low demands on temporal precision31–33. Some closed-loop
interventions, however, require millisecond precision and highly
constant latencies between cue and response34. Syntalos, by its design,
is not ideally suited for such hard real-time constraints. Memory allo-
cations as well as inter-thread and inter-process communication cause
small but not precisely predictable delays which can add up to sig-
nificant latencies. In our experiments, such latencies were in the range
of 2–6ms for standard Python code, and ~150 µs when using Syntalos
with MicroPython (Fig. 5D). The standard Python module in Syntalos
may not be sufficiently precise for interfering with very fast processes
like sharp wave-ripple oscillations35–37, while MicroPython can be lim-
iting for such applications as well. In such cases, we suggest using
dedicated software on a separate computer or a FPGA device, which is
then controlled by the DAQ system (for an example, see Fig. S4).

Syntalos, unlike any other multi-modal DAQ solution, runs on
Linux, such that all parts of the data acquisition pipeline are open-
source and freely modifiable. During development, the simple drag &
drop GUI was refined in several iterations with feedback from inex-
perienced or new users of different laboratories, resulting in an easy-
to-use interface for individualized experimental designs. During these
interactions, special emphasis was put on stability during ongoing
experiments, automated resource monitoring and efficient warnings
to prevent data loss in failure scenarios (e.g. lack of hard disk space for
data storage). For test and demonstration purposes, Syntalos can also
be run on the Windows subsystem for Linux (WSL2), such that users
can explore the program without changing their operation system to
Linux. However, we do not recommend this version for real
experiments.

Overall, Syntalos provides a versatile and easy-to-use tool for the
scientific community dealing with complex experimental settings,
especially those combining behavioral studies with physiological mea-
surements. Syntalos ensures easy data acquisition and produces stan-
dardized, shareable raw data. Instead of replacing existing DAQ
solutions, it can integrate and synchronize multiple existing acquisition
tools, facilitating data acquisition for (neuro)scientists in a broad range
of applications (see Figs. 1, 6 and Supplementary Fig. S7 for application
examples), and is already in active use38. We envision that our Syntalos
framework will be broadly applicable to enable and scale up precise
correlations between behavior and the underlying single cell and neural
network activity to find novel mechanisms how the brain computes and
processes sensory stimuli by its internal representations and how such
representations can lead to targeted behavior.

Methods
Ethical statement
Animal treatment and all experimental procedures were approved by
the state government of Baden-Württemberg and performed in

Fig. 6 | Example application of a behavioral experiment with simultaneous
recording of calcium signals with an UCLA Miniscope. A M-maze rules for suc-
cessful trials and learning curves for inbound (left) and outbound (right) trials over
several days. B Experiment day 2, example analysis. First panel depicts the trajec-
tory of the animal. Second panel: probability to find the animal at a certain location.
Note that the animal spends more time at the reward points than on the different
tracks/arms. Thirdpanel: animal speed; in linewith theprevious panel. The speed in
highest in the straight arms and lowest at the reward points Fourth panel: max-
imum intensity projection of the calcium imaging. Cells that were active during the
experiment are visible in the image. Fifth panel: Conditionalfiring probability of the
cell outlined in the previous panel. The cell is a place cell that is specific to the

reward point at the middle arm. Last panel: mutual Shannon information of the
location and the activity of the cell. C Visualization of the trajectory of the animal
and the calcium signal. Left panel: color coding of the individual sections of the
M-maze. Linear coordinates are additionally assigned to each arm. Right panel:
linear coordinates of the animals position (three upper panels), the ‘raw’ calcium
signal (quantifiedbyMinian aftermotion correction andROI assignment) of the cell
highlighted inB, and the speedof the animal (two lowerpanels).Note that the cell is
activated when the animal enters the reward location in the middle arm. D and
E similar to B and C but on experimental day 4. Note that the cell from day 2 is also
active on day 4 and has the same firing field and information content.

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 11

https://bonsai-rx.org/
www.nature.com/naturecommunications

accordance with regulations and guidelines of Heidelberg University
and the Federation of European Laboratory Animal Science Associa-
tions (FELASA) under the supervision of local ethics committees
(permission by the state government of Baden-Württemberg, no. 35-
9185.81/G-62/19, 35-9185.81/G-216/19, and 35-9185.81/G-78/23).

The design and use of Syntalos are described in the Results sec-
tion. Test runs of the software suite were mostly performed with
technical equipment, not involving any biological material or animals.
Realistic ‘use case’ experiments have been performed with mice (see
Results and Figs. 1, 6, Supplementary Fig. S7, and ref. 38).

Software bill of materials
Syntalos iswritten inmodernC++20using theQt framework. It runs on
theLinuxoperating system, requiring at least kernel 4.20 (all testswere
run on systems with Linux 5.10 or higher). The software components
shown in Supplementary Table S2 are directly used to build and run
Syntalos. Some modules require dedicated software components or
embed additional libraries (see Supplementary Table S3).

Electrophysiology behavior experiment
For the data presented in Fig. 1, we used six adult male C57BL/6NRj
mice (Janvier Labs, Le Genest-Saint-Isle, France), aged 8–10 weeks at
the onset of training. The animals were individually housed in a
ventilated Scantainer (Scantainer Classic, SCANBUR A/S, Karlslunde,
Denmark) maintained under controlled conditions: a 12-hour inver-
ted light/dark cycle (lights off at 7:00 a.m. and on at 7:00 p.m.),
temperature range of 22–25 °C, and humidity levels between 40 and
60%.During behavioral training (conducted during the light phase), a
food restriction protocol was followed to maintain each animal’s
body weight at 85–95% of its baseline weight, with ad libitum access
to water.

In preparation for surgical procedures, buprenorphine hydro-
chloride (Bupresol vet. Multidose 0.3mg/ml, 10ml, CP-Pharma Han-
delsgesellschaft mbH, Burgdorf, Germany) was administered
subcutaneously at a dose of 0.1mg/kg of body weight, 30min before
general anesthesia. Anesthesia was induced and maintained with iso-
flurane (1–2% in oxygen, Isofluran Baxter, Baxter Deutschland GmbH,
Germany), and depth was adjusted according to the eyelid and pedal
reflexes. Throughout surgery, body temperature was kept between
36–38 °Cusing heating pads. To protect the eyes, a corneal application
of eye ointment (Bepanthen®, Bayer, Germany) was applied, and sub-
cutaneous saline (30ml/kg body weight, Fresenius Kabi Deutschland
GmbH, Bad Homburg, Germany) was administered to maintain
hydration. Lidocaine (Xylocaine® 1%, Aspen Pharma Trading Limited,
Ireland) was used to anesthetize the scalp locally before surgery. The
animal was then positioned in a stereotactic apparatus (David Kopf
Instruments, Tujunga, CA, USA) designed to minimize trauma. Small
holes were drilled into the skull over the designated target areas
(coordinates available in Supplementary Table S6, tetrodesmade from
12.5 µm diameter tungsten wire, California Fine Wire, CA, USA) using a
dental drill (78001 Microdrill, RWD Life Science, TX, USA). The elec-
trode interface board (EIB) was lowered to the desired depth and
affixed to the skull using cyanoacrylate adhesive (Super-bond, Sun
Medical, Japan) and dental cement (Paladur®, Kulzer, Germany). After
the procedure, animals were placed on a heated surface in a pre-
warmed enclosure before being returned to their ventilated housing.
Behavioral experiments started only after a full recovery period fol-
lowing EIB implantation.

Whisker touch responsivenesswasdefined by a significant change
in firing rates upon aperture touch within a 200ms response window
following aperture touch (to either of the two aperture states), ana-
lyzed using a two-sided Wilcoxon signed rank test.

Aperture state decoding from neural spike timing data was con-
ducted with the Neural Decoding Toolbox39. Classifier training was
performed by splitting the dataset into a training set (90% of labels)

and a test set (10% of labels). Each set included spike traces from
individual neurons for a given trial along with the corresponding
aperture labels. Training of a support vector machine (SVM) classifier
was carried out using the LIBSVM software40. The classifier underwent
10-fold cross-validation, ensuring independent training and testing
across different data partitions. To evaluate decoding accuracy varia-
bility, each selection of units was bootstrapped 20 times. Decoding
accuracies in the boxplotswere calculated over a timewindow ranging
from trigger onset to 400ms after trigger onset. Data are represented
using box-and-whisker plots, where the central line within each box
denotes the median value. The upper and lower boundaries of each
box correspond to the upper (75th percentile) and lower (25th per-
centile) quartiles, respectively. Whiskers extend to the furthest data
points within 1.5 times the interquartile range (IQR) from the edges of
the box, capturing the maximum and minimum values that are not
considered statistical outliers.

Surgery procedure for data shown in Supplementary Fig. S7 was
similar but instead of tetrodes, single electrodes made from 50 µm
diameter tungsten wire (California Fine Wire, CA, USA) were used.
Coordinates are available in Supplementary Table S7.

Miniscope behavior experiment
Figure 6 shows an example experiment of a male C57/Bl6N mice (WT,
Janvier Labs, Le Genest-Saint-Isle, France) implanted with a UCLA
Miniscope v4. The surgerywasperformed at age P42 in twosteps. First,
a GRIN (gradient refractive index) leans (GRINTECH, NEM-100-20-20-
520-S-0.5p) was coated with an emulsion of Fibroin41, 1:8000 diluted
Cre-virus under the CamKII promotor (Addgene, AAV1.CaMKII
0.4.Cre.SV40) and GCaMP-7f-containing virus (Addgene, AAV1-syn-
FLEX-JGCaMP7f-WPRE) and implanted above the right hippocampus
after the cortex above the implantation site was removed. After three
weeks of expression, a second surgery was performed to implant the
base plate of the UCLA Miniscope at a position optimized to the
expression of GCaMP. After the second surgery, the animal was
allowed to recover for another week before starting the behavioral
experiments. During the time after the first surgery and the beginning
of the behavioral experiments, the animal was gradually accustomed
to the experimenter and the experimental room.

The behavioral experiment was performed on an M-maze (Fig. 6A).
For getting reward (15 µl of condensedmilkmixed 1:1 with water for final
concentration of 4 % fat, 10 % fat-free dry milk, 27% sugar) at the end-
points of the individual arms, the animal has to alternated between the
arms i.e. in the following fashion: left→middle→ right→middle→ left and
so forth. The reward was given with custom-made automatic dispensers,
which achieve micro-liter accuracy (https://github.com/bothlab/maze-
hardware/blob/main/README.md).Thebehavioral experiment consisted
of a sessionof 15minover sevendays.During the 15min, theanimal could
freely explore the maze. However, during the first two days, gates at the
connection of the three arms forced the animal to the correct arm. Thus,
animals were familiarized with getting reward at the endpoints of the
arms and the required rule. Those two days are omitted in Fig. 6. After
these twodays, theanimal could freely choosebetween thearms,butwas
only rewardedwhen the sequencewas correct. Theperformanceof those
five days is depicted in Fig. 6A.

Calcium signals were analyzed using Minian26. The position of the
animal was determined using DeepLabCut27.

Study design and consideration of sex
Building on a body of work conducted in male subjects, this study was
designed with a focus on male subjects only, in order to ensure com-
parability and reproducibility with prior research and established
protocols. Furthermore, this study focuses on validating the func-
tionality and reliability of the newly developed software. The software
is designed to be broadly applicable, and future studies will explore its
use across both sexes.

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 12

https://github.com/bothlab/maze-hardware/blob/main/README.md
https://github.com/bothlab/maze-hardware/blob/main/README.md
www.nature.com/naturecommunications

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used to validate Syntalos in this study are available on
Zenodo at https://zenodo.org/records/13862969. Additional datasets
and code to create the figures for this study are available at https://
zenodo.org/records/14179869.

Code availability
Code created for and referenced in this study is available freely under
Open Source licenses: Syntalos: https://github.com/syntalos/
syntalos42. PoMiDAQ (Miniscope support): https://github.com/
bothlab/pomidaq43. Edlio (Python data reader for EDL): https://
github.com/syntalos/edlio44. Timing-validation (time synchronization
analysis code used in this study): https://github.com/syntalos/timing-
validation45. LaBrStim (GALDUR online stimulation code): https://
github.com/bothlab/labrstim46. Maze Hardware Designs: https://
github.com/bothlab/maze-hardware47. Syntalos is also made available
in the Flathub Linux software store, for easy installation on any Linux
distribution without the need to compile any code. We also provide
packages for Debian and a binary package repository for Ubuntu. You
can find out more at: https://flathub.org/apps/org.syntalos.syntalos
and https://syntalos.org/docs/setup/install/.

References
1. Jensen, H. J. Self-Organized Criticality: Emergent Complex Behavior

in Physical and Biological Systems (Cambridge University
Press, 1998).

2. Kim, C. Y., Kim, S. J. & Kloosterman, F. Simultaneous Cellular
Imaging, Electrical Recording and Stimulation of Hippocampal
Activity in Freely Behaving Mice. Exp. Neurobiol. 31, 208–220
(2022).

3. Karimi Abadchi, J., Rezaei, Z., Knopfel, T., McNaughton, B. L. &
Mohajerani, M. H. Inhibition is a prevalent mode of activity in the
neocortex around awake hippocampal ripples in mice. Elife 12,
e79513 (2023).

4. Jadhav, S. P., Rothschild, G., Roumis, D. K. & Frank, L. M. Coordi-
nated Excitation and Inhibition of Prefrontal Ensembles during
Awake Hippocampal Sharp-Wave Ripple Events. Neuron 90,
113–127 (2016).

5. Asth, L., Lobão-Soares, B., André, E., Soares, V. D. P. & Gavioli, E. C.
The elevated T-maze task as an animal model to simultaneously
investigate theeffects of drugson long-termmemory andanxiety in
mice. Brain Res. Bull. 87, 526–533 (2012).

6. Henriksen, E. J. et al. Spatial Representation along the Proximodistal
Axis of CA1. Neuron 68, 127–137 (2010).

7. Kingsbury, L. et al. Correlated Neural Activity and Encoding of
Behavior across Brains of Socially Interacting Animals. Cell 178,
429–446 e416 (2019).

8. Kristien, M. et al. Mitigating JIT compilation latency in virtual
execution environments. The 15th ACM SIGPLAN/SIGOPS Interna-
tional Conference 101–107 (ACM Press, 2019).

9. Delgado,R.&Choi, B.W.NewInsights Into theReal-TimePerformance
of a Multicore Processor. IEEE Access 8, 186199–186211 (2020).

10. Patil, P. T., Dhotre, S. & Jamale, R. S. A Survey on Fairness and
Performance Analysis of Completely Fair Scheduler in Linux Kernel.
International Journal of Control Theory and Applications 9,
495–501 (2016).

11. Lozi, J.-P. et al. The Linux scheduler: a decade of wasted cores.
EuroSys '16: Proceedings of the Eleventh European Conference on
Computer Systems. 1–16 (Association for Computing Machin-
ery, 2016).

12. de Oliveira, D. B., Casini, D., de Oliveira, R. S. & Cucinotta, T.
Demystifying the Real-Time Linux Scheduling Latency. 32nd Euro-
micro Conference on Real-Time Systems. 9:1–9:23 (2020).

13. Muller, E. et al. Python in neuroscience. Front. Neuroinformatics 9,
11 (2015).

14. Venkataraman, A. & Jagadeesha, K. K. Evaluation of Inter-Process
Communication Mechanisms. https://pages.cs.wisc.edu/~adityav/
Evaluation_of_Inter_Process_Communication_Mechanisms.
pdf (2015).

15. Ismail, M. & Suh, G. E. Quantitative Overhead Analysis for Python.
2018 IEEE International Symposium on Workload Characterization
(IISWC) 36–47 (IEEE, 2018).

16. Desrochers, C. A Fast Lock-Free Queue for C++. https://
moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-
queue-for-c++ (2014).

17. Kerrisk, M. The Linux Programming Interface: A Linux and UNIX
System Programming Handbook, 1st ed. (No Starch Press, 2010).

18. Puaut, I. Real-time performance of dynamic memory allocation
algorithms. 14th Euromicro Conference on Real-Time Systems.
Euromicro RTS 2002, 41–49 (IEEE Comput. Soc, 2002).

19. Ramadoss, L. & Hung, J. Y. A study on universal serial bus latency in
a real-time control system. IECON 2008 - 34th Annual Conference
of IEEE Industrial Electronics Society, 67–72 (IEEE, 2008).

20. Aharoni, D. & Hoogland, T. M. Circuit Investigations With Open-
Source Miniaturized Microscopes: Past, Present and Future. Front.
Cell. Neurosci. 13, 141 (2019).

21. Tarcsay, G., Boublil, B. L. & Ewell, L. A. Low-Cost Platform for Mul-
tianimal Chronic Local Field Potential Video Monitoring with Gra-
phical User Interface (GUI) for Seizure Detection and Behavioral
Scoring. eNeuro 9, ENEURO.0283–22.2022 (2022).

22. Buccino, A. P. et al. Open source modules for tracking animal
behavior and closed-loop stimulation based on Open Ephys and
Bonsai. J. Neural Eng. 15, 055002 (2018).

23. Frank, L. M., Brown, E. N. & Wilson, M. Trajectory encoding in the
hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000).

24. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hip-
pocampal sharp-wave ripples support spatial memory. Science
336, 1454–1458 (2012).

25. Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Time and experience dif-
ferentially affect distinct aspects of hippocampal representational
drift. Neuron 111, 2357–2366 e2355 (2023).

26. Dong, Z. et al. Minian, an open-source miniscope analysis pipeline.
eLife 11, e70661 (2022).

27. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-
defined body parts with deep learning.Nat. Neurosci. 21, 1281–1289
(2018).

28. Smith, A. C.,Wirth, S., Suzuki, W. A. & Brown, E. N. Bayesian analysis
of interleaved learning and response bias in behavioral experi-
ments. J. Neurophysiol. 97, 2516–2524 (2007).

29. Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D. & Morris, R.
Event-driven programming for robust software. Proceedings of the
10th workshop on ACMSIGOPS European workshop. 186–189 (ACM
Press, 2002).

30. Bainomugisha, E., Carreton, A. L., Cutsem, T. V., Mostinckx, S. &
Meuter, W. D. A survey on reactive programming. ACM Comput.
Surv. 45, 1–34 (2013).

31. Jin, T.-E., Witzemann, V. & Brecht, M. Fiber Types of the Intrinsic
Whisker Muscle and Whisking Behavior. J. Neurosci. 24, 3386–3393
(2004).

32. Card, G. & Dickinson, M. Performance trade-offs in the flight initia-
tion of Drosophila. J. Exp. Biol. 211, 341–353 (2008).

33. Ledberg, A. & Robbe, D. Locomotion-Related Oscillatory Body
Movements at 6–12 Hz Modulate the Hippocampal Theta Rhythm.
PLoS ONE 6, e27575 (2011).

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 13

https://zenodo.org/records/13862969
https://zenodo.org/records/14179869
https://zenodo.org/records/14179869
https://github.com/syntalos/syntalos
https://github.com/syntalos/syntalos
https://github.com/bothlab/pomidaq
https://github.com/bothlab/pomidaq
https://github.com/syntalos/edlio
https://github.com/syntalos/edlio
https://github.com/syntalos/timing-validation
https://github.com/syntalos/timing-validation
https://github.com/bothlab/labrstim
https://github.com/bothlab/labrstim
https://github.com/bothlab/maze-hardware
https://github.com/bothlab/maze-hardware
https://flathub.org/apps/org.syntalos.syntalos
https://syntalos.org/docs/setup/install/
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++
https://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++
https://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++
www.nature.com/naturecommunications

34. Dutta, S., Ackermann, E. & Kemere, C. Analysis of an open source,
closed-loop, realtime system for hippocampal sharp-wave ripple
disruption. J. Neural Eng. 16, 016009 (2019).

35. Girardeau,G., Benchenane, K.,Wiener, S. I., Buzsaki, G.&Zugaro,M.
B. Selective suppression of hippocampal ripples impairs spatial
memory. Nat. Neurosci. 12, 1222–1223 (2009).

36. Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated
hippocampal activity during rest impairs spatial learning in the rat.
Hippocampus 20, 1–10 (2010).

37. Gridchyn, I., Schoenenberger, P., O’Neill, J. & Csicsvari, J.
Assembly-Specific Disruption of Hippocampal Replay Leads to
Selective Memory Deficit. Neuron 106, 291–300 e296 (2020).

38. Heimburg, F. et al. A tactile discrimination task to study neuronal
dynamics in freely-moving mice. bioRxiv, https://www.biorxiv.org/
content/10.1101/2024.08.24.609326v1 (2024).

39. Meyers, E. M. The neural decoding toolbox. Front. Neuroinform. 7,
8 (2013).

40. Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector
machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011).

41. Jackman, S. L. et al. Silk Fibroin Films Facilitate Single-Step Tar-
geted Expression of Optogenetic Proteins. Cell Rep. 22,
3351–3361 (2018).

42. Klumpp, M. syntalos/syntalos: Version 2.0.2 (v2.0.2). Zenodo.
https://doi.org/10.5281/zenodo.14207425 (2024).

43. Klumpp, M. PoMiDAQ (0.5.1). Zenodo. https://doi.org/10.5281/
zenodo.8225049 (2023).

44. Klumpp, M. edlio: v0.2.1 (v0.2.1). Zenodo. https://doi.org/10.5281/
zenodo.14179270 (2024).

45. Klumpp, M., Alves Dias, A. L., Simon, J. & Both, M. Syntalos Pub-
lication Figure Source Data. Zenodo. https://doi.org/10.5281/
zenodo.14179869 (2024).

46. Klumpp, M. & Allen, K. LaBrStim: 0.2.1 (v0.2.1). Zenodo. https://doi.
org/10.5281/zenodo.14179968 (2024).

47. Embray, L. & Klumpp,M.MazeHardware (v0.1).Zenodo. https://doi.
org/10.5281/zenodo.14166560 (2024).

48. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci.
Eng. 9, 90–95 (2007).

49. Nath, T. et al. Using DeepLabCut for 3Dmarkerless pose estimation
across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

Acknowledgements
This work was supported by the German Research Foundation (grant
SFB1134, project A03 and DFG BO 3512/2-1 to M.B. as well as DFG Grant
GR3757/4-1 to A.G.). The authors acknowledge support by the state of
Baden-Württemberg through bwHPC and the German Research Foun-
dation (DFG) through grant INST 35/1597-1 FUGG.We thank Nadin Saluti
and Melina Castelanelli from the Alexander Groh group, the Thomas
Kuner group, andAvi Adlakha for testing various versions of the Syntalos
software and providing valuable feedback. We also thank the devel-
opers of all open-source projects we depend on for providing insights,
merging our patches or addressing bug reports, as well as for providing
the building blocks to create Syntalos in the first place. Syntalos itself as
well as Figs. 1, 2, 3, 5, Supplementary Figs. S3, S4, S5 and S7 contain
graphics based on Breeze icons copyright KDE and licensed under the
GNU LGPL version 3 or later https://develop.kde.org/frameworks/
breeze-icons/. Source files for the icons are available in Syntalos’ code
repository. “Python” and the Python logos are trademarks or registered
trademarks of the Python Software Foundation. The Intan and MicroPy-
thon logos belong to the respective organizations and are used with

permission. The Bonsai logo is published by the Bonsai Foundation CIC
and distributed under the CC BY-SA 4.0 license. The Arduino logo is
used for explanatory purposes only. The Aravis icon was created by
Emmanuel Pacaud and published under the CC BY-SA 4.0 license. The
Linux mascot (the Tux penguin) can freely be distributed. We use a
redrawing of Tux from the Breeze icon set with permission. The Minis-
cope logo belongs to the Miniscope Project, published under the GPL-
3.0 license. Figures 1, 3, 4, 5, 6, Supplementary Figs. S4 andS5 aremade
using Matplotlib48. For body part tracking we used DeepLabCut (version
2.3.0), the DeepLabCut logo used in Supplementary Fig. S3 belongs to
the DeepLabCut project, licensed under the LGPL-3.0 license27,49.

Author contributions
M.K. designed software,M.K. and L.E. designed hardware,M.K., A.G. and
M.B. conceived of and designed experiments, M.K., F.H., A.L.A.D., and
J.S. performed experiments,M.K., M.B., and F.H. analyzed the data,M.K.,
A.D., and M.B. wrote the original manuscript. All authors revised and
edited the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-56081-9.

Correspondence and requests for materials should be addressed to
Martin Both.

Peer review information Nature Communications thanks Rina Zelmann,
who co-reviewed with Brian Coughlin, Oliver Barnstedt and the other,
anonymous, reviewer(s) for their contribution to the peer review of this
work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-56081-9

Nature Communications | (2025) 16:708 14

https://www.biorxiv.org/content/10.1101/2024.08.24.609326v1
https://www.biorxiv.org/content/10.1101/2024.08.24.609326v1
https://doi.org/10.5281/zenodo.14207425
https://doi.org/10.5281/zenodo.8225049
https://doi.org/10.5281/zenodo.8225049
https://doi.org/10.5281/zenodo.14179270
https://doi.org/10.5281/zenodo.14179270
https://doi.org/10.5281/zenodo.14179869
https://doi.org/10.5281/zenodo.14179869
https://doi.org/10.5281/zenodo.14179968
https://doi.org/10.5281/zenodo.14179968
https://doi.org/10.5281/zenodo.14166560
https://doi.org/10.5281/zenodo.14166560
https://develop.kde.org/frameworks/breeze-icons/
https://develop.kde.org/frameworks/breeze-icons/
https://doi.org/10.1038/s41467-025-56081-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Syntalos: a software for precise synchronization of simultaneous multi-modal data acquisition and closed-loop interventions
	Results
	General architecture
	Program behavior during experiment
	Time synchronization
	Evaluation of time synchronization
	Application case

	Discussion
	Methods
	Ethical statement
	Software bill of materials
	Electrophysiology behavior experiment
	Miniscope behavior experiment
	Study design and consideration of sex
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

