UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

EXTENSION AND IMPROVEMENT OF A PCIE-
BASED FPGA ENVIRONMENT FOR TESTING
HPC ARCHITECTURES

ANDREA QUEROL DE PORRAS

Thesis supervisor: FILIPPO MANTOVANI (Barcelona Supercomputer Center)
Tutor: XAVIER MARTORELL BOFILL (Department of Computer Architecture)

Degree: Master Degree in Innovation and Research in Informatics (High Performance Computing)

Thesis report
Facultat d'Informatica de Barcelona (FIB)

Universitat Politécnica de Catalunya (UPC) - BarcelonaTech

Abstract

The European Processor Initiative (EPI) is a European project that performs re-
search to advance High-Performance Computing (HPC) through the development of Eu-
ropean technology. EPI aims at the development of a general-purpose processor and a
RISC-V-based accelerator. Barcelona Supercomputing Center (BSC) is involved in the
development of a Vector Processor Unit to be connected to a RISC-V core, called Vector
tile, that is part of the EPI accelerator. While the actual hardware is being produced
by the silicon foundry, the project foresees the implementation of a Vector tile within an
Field Programmable Gate Array (FPGA) that serves as a hardware prototype for software
development. The set of hardware and software tools necessary for making the Vector
tile operational as an HPC compute node is called Software Development Vehicles (SDV).
The SDV functionalities rely on a Xilinx FPGA connected to a host-PC via a Peripheral
Component Interconnect Express (PCle) link. This thesis aims to study, evaluate and
upgrade the current PCle subsystem working on the EPI SDV. The main technical con-
tribution of this work is the improvement of the PCle link between the host-PC and the
FPGASs housing the Vector tile making use of the latest Xilinx Intellectual Property (IP)
and the corresponding software. This work allowed both to improve the performance of
the PCle link and to expand the portability of the SDV environment to support one more
FPGA board.

Contents

1 Introduction

1.1 Master Thesis outline . . .

2 Motivation and objectives

21 EPL

2.1.1 EPAC
2.2 MEEP cluster
2.3 Motivation
2.4 Research questions

3 Technical background
3.1 FPGA

3.1.1 Bitstream
3.1.2 Resources
3.1.3 Timing
3.1.4 Pins
3.1 IPs . o oo
3.2 SDV insfrastructure
3.3 VCUI28
3.3.1 Usage in FPGAQSDV
3.4 Xilinx Software Environmento

3.4.1 Vivado Design Suite
3.4.2 Constraints

3.4.3 Bitstream generation Lo

3.4.4 Resource utilization

4 PCle and DMA

10
10
12
12
14
16
17
18
20
20
22
22
25
26
26

28

Contents Contents

4.1 PCle architecture 28
4.1.1 Interrupts 30

4.1.2 Functions 30

4.2 DMA protocol 32
4.2.1 DMA gather/scatter transfers 33
4.2.2 DMA support in PCle 33

4.3 AXI protocol 34
4.4 XDMA Xilinx IP 35
4.4.1 Components 37
4.4.2 Operations. e 38
4.4.3 Port descriptiono 39
444 Drivero 42

4.5 RDMA e 43
4.5.1 Concepts. e 43
4.5.2 Queues 44
4.5.3 RDMA Write operation 44
4.5.4 RDMA Read operation 45

4.6 QDMA Xilinx IP 45
4.6.1 Architecture 46

4.6.2 Operations. e 49
4.6.3 Port description 52
4.6.4 Driver L 52

5 State-of-the-art 54
5.1 RISC-V implementations in FPGA 54
5.1.1 Rocket Chip 54
5.1.2 Nios V processor 55
5.1.3 PULP platform 56
5.1.4 Ariane 56

5.2 Initial state of SDV designo 56
5.3 Comparison o7
6 Replacement of XDMA with QDMA 58
6.1 Example design 58

Contents Contents
6.2 Replacement in SDV design 59
6.2.1 Changeof IPs 60

6.2.2 Constraints 68

6.2.3 Bitstream generation failure 0000 69

6.2.4 Pinout problemo 70

6.2.5 Pinout assignment Lo 71

6.2.6 New pinout problem 74

6.2.7 Driver and tools compilation 0000 78

6.2.8 Dataword testo 78

6.2.9 Loading the driver oo 79

6.2.10 Queue configurationo 82

6.2.11 MSIinterruptions 83

6.2.12 MSIx interruptionso 85

6.2.13 Adapt SDV tools 87

6.2.14 Process automationo oL 87

6.3 Evaluation 89
6.3.1 Data burst performance 89

6.3.2 Boottime 96

6.3.3 Resource utilizationo Lo 96

6.3.4 Synthesis and implementation time 99

6.3.50 WNS 100

7 Conclusions 102
7.1 Future work 103
7.1.1 QDMA at Xilinx Alveo U55C 103

7.1.2 Ethernet over PCle 103

7.1.3 Custom ILA 103
Acronyms 105
Appendices 108
Appendix A Dummy tests 109
A1l Dummy word 109
A2 Dummy buffer 112

Contents Contents

A3 Makefile s, 117

Chapter 1

Introduction

High-Performance Computing (HPC) refers to the use of powerful computers and ad-
vanced algorithms to solve complex computational problems at a significantly higher speed
and performance than conventional computing systems. To achieve this higher speed,
HPC systems leverage accelerators (at node level) and parallelism (at system level).

RISC-V is an open-source and free Instruction Set Architecture (ISA) that offers
simplicity, modularity, and scalability, enabling efficient and customizable processor de-
signs. An open and free ISA allows having a de-facto standard interface between software
and hardware, leaving hardware designers the freedom to explore, and take profit from,
different implementation points.

The European Processor Initiative (EPI) is a European research project focused on
advancing HPC by developing European technology, with a specific focus on creating a
general-purpose processor and a RISC-V-based accelerator. Within this initiative, BSC is
actively involved in the development of a Vector Processor Unit (VPU) which is designed
to be connected to a RISC-V core as part of the VEC tile of the EPI accelerator.

An accelerator is a specialized hardware or co-processor (device) designed to offload
specific tasks or computations from the main processor (host) to improve performance.
Accelerators often have their own ISAs or rely on specialized libraries. They can take
various forms like GPUs, Field Programmable Gate Arrays (FPGAs), or Application-
Specific Integrated Circuitss (ASICs), and HPC applications can take advantage of them
to achieve more computing power, improving the application’s performance by accelerat-
ing the application partly or completely. The operation of GPUs is based on workload
offloading from the host to the device, but not all accelerators follow this paradigm. In
the case of the EPI accelerator, named European Processor Accelerator (EPAC), it boots
Linux and can operate as a self-hosted stand-alone system.

Currently, the VEC tile of the EPAC accelerator is being tested on FPGAs. An
FPGA is a board with reprogrammable logic that can be used, for example, to accelerate
algorithms with specialized logic or to emulate and test the Register-Transfer Level (RTL)
code of processors or ASICs before sending it to the factory.

When using an FPGA as an accelerator and/or a test platform for RTL, a commu-
nication protocol is necessary to enable communication between the host system and the

Chapter 1. Introduction 1.1. Master Thesis outline

FPGA (host-device model). Typically, the Peripheral Component Interconnect Express
(PCle) protocol is used, which offers high bandwidth and low latency. For achieving a
correct host-device communication, it is necessary for the host to provide software sup-
port through the device driver, and for the device (FPGA) to implement the necessary
hardware for the PCle protocol.

The FPGAs used in EPI are Xilinx and offer 2 PCle subsystems, two implementations
to manage host-device communication through PCle. The ultimate objective of this thesis
is to contribute to the EPI project by replacing the current PCle subsystem with the latest
one offered by Xilinx, which enables new avenues of development and improvement in the
EPAC design on FPGAs.

1.1 Master Thesis outline

The document is structured as follows:

e Chapter 2 contextualizes the motivation behind the thesis and sets out the thesis
research questions.

e Chapter 3 offers an explanation of the technical aspects needed for the development.

e Chapter 4 contains a description of PCle and DMA, and on top of that, the expla-
nation of the Xilinx subsystems for PCle implementing DMA studied.

e Chapter 5 illustrates the current status of the research and industry.

e Chapter 6 explains the technical development of this thesis, altogether with its
evaluation.

e Chapter 7 exposes the conclusions, answering to the research questions, and future
work of this master thesis.

Chapter 2

Motivation and objectives

2.1 EPI

The European Processor Initiative (EPI) is a European project that aims to create and
institute a European computing infrastructure, specifically targeting HPC. This infras-
tructure is based on a General Purpose Processor (GPP) and an accelerator, which is
called EPAC. This project is being carried out by several partners, which are companies
and research centers [1].

2.1.1 EPAC

EPAC is a collection of different accelerators all based on the RISC-V architecture. Some
of the EPAC’s accelerators are EPAC-VEC, EPAC-VRP, and EPAC-STX, and each one
targets a specific purpose. Figure 2.1 illustrates its structure. EPAC-VEC is a RISC-V
CPU connected to a RISC-V VPU with the capacity to handle vector registers of up to
256 double-precision elements per instruction [2].

Barcelona Supercomputing Center (BSC) takes part in the development of the EPAC-
VEC accelerator. Some of BSC’s contributions are the development of the VPU that
follows the V (Vector) extension of the RISC-V ISA, of the LLVM compiler for RISC-V
with support to the vector extension, and of the Software Development Vehicles (SDV)
infrastructure.

The work performed in this thesis is encapsulated in the EPAC-VEC accelerator, in
specific, in the SDV project.

A part of the SDV infrastructure consists of nodes with FPGAs that we use to test
the EPAC-VEC accelerator. More technical details about SDV are given in Section 3.2.
The FPGA board used in those nodes is the Xilinx VCU128 [3]. There are four FPGA
nodes and they are used by the EPAC-VEC and SDV developers, as well as an increasing
number of external researchers interested in testing EPAC-VEC on our setup. Due to
the increasing number of researchers interested in testing the RISC-V vector architecture
implemented in EPAC-VEC, we expect availability issues both for researchers and SDV
developers.

Chapter 2. Motivation and objectives 2.2. MEEP cluster

L2 cache | =+ | L2 cache
! |
Host . .
CPU Bridge |« Network on Chip (NoC)
! !

VEC VEC

(cPu|...|[cPul| | sTX |.--| STX VRP

| vPU | | vPU |

Figure 2.1: EPAC basic scheme with some of its accelerators and interconnections.

2.2 MEEP cluster

MareNostrum Experimental Exascale Platform (MEEP) is an FPGA-based cluster, whose
objective is to facilitate the hardware and software development of future European tech-
nology for exascale systems [4]. Tt is formed by 12 nodes with 8 FPGAs per node, adding
up to 96 FPGAs in total. The FPGAs used are Xilinx Alveo U55C!. It will be available
by the end of June 2023.

2.3 Motivation

The MEEP cluster is suitable as a complement to the SDV platform, because it would
allow increasing the number of SDV nodes and solve the availability issues. However, the
current FPGA design used in SDV needs a change so it can work in MEEP’s nodes.

The current FPGA design utilizes a specific PCle subsystem that enables the usage
of the PCle interface. The PCle subsystem employed is Xilinx DMA (XDMA), one of the
two that Xilinx offers. The other Xilinx PCle subsystem is Queue DMA (QDMA).

The MEEP cluster is a multiuser per node system, therefore virtualization is neces-
sary to isolate users and their FPGAs between them. This requires using QDMA in the
FPGAs because it supports Single Root 1/O Virtualization (SR-IOV), which is a PCle
feature that allows virtualization and that is detailed in Section 4.1.2.

To be able to use any PCle subsystem two pieces are required: the matching support
in the FPGA design and the corresponding driver in the host machine. The QDMA FPGA
part can be fully managed by the SDV team, whereas the driver needs to be agreed with
the administrators of the MEEP machines in order to support the agreed Direct Memory
Addressing (DMA) implementation. Hence, the available driver in the software stack will
be the QDMA and the SDV design must be adapted to the QDMA requirement.

!Alveo U55C High Performance Compute Card https://www.xilinx.com/products/
boards-and-kits/alveo/ub5c.html

https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html
https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html

Chapter 2. Motivation and objectives 2.4. Research questions

2.4 Research questions

For the completion of this Master’s Thesis work, we considered obtaining an answer to
the following research questions:

1. Does QDMA improve the performance over XDMA?

2. Which impact has QDMA over the design compared with XDMA? And over the
software tools?

3. Is replacing XDMA with QDMA worth for the project?

Chapter 3

Technical background

This chapter exposes the technical information necessary for this thesis. It is explained
what is an FPGA, the SDV infrastructure, the FPGA used in this thesis, and finally the
software environment used.

3.1 FPGA

An FPGA is a semiconductor device formed by a pool of configurable Look-Up Tables
(LUTS), registers, Digital Signal Processor (DSP) units, fast-memories, and Input/Out-
puts (IOs), interacting through a programmable interconnect fabric. The usage of that
components is typically implemented with Hardware Description Languages (HDLs), such
as VHDL or Verilog, which define the RTL. This device can be reprogrammed as many
times as desired with different application or functionality requirements after manufac-
ture [5]. Reconfigurability makes FPGAs more flexible than ASICs at the price of a lower
transistor density. In addition, an FPGA offers different resources and reconfigurable
logic such as DSPs, hard Intellectual Properties (IPs), etc., which will be explained in the
current section.

FPGAs are often mounted on custom boards exposing several interfaces. This way
the same board can serve as a “development board” or “development kit” for different
purposes. Figure 3.1 shows a picture of the VCU128 development kit used for the work
of this thesis. More details about this board will be explained in Section 3.3.

10

Chapter 3. Technical background 3.1. FPGA

Figure 3.1: FPGA board, Virtex UltraScale+ HBM VCU128 FPGA Evaluation Kit.

Source: [3].

FPGA’s resources can be reconnected as desired, letting them to be changed as often
as needed. That re-programmability capacity is FPGA’s outstanding feature, as it allows
that a single FPGA can be used in many ways, for different purposes.

On the one hand, an FPGA can be used as an accelerator. Its main advantage is
the possibility of having as accelerator design as scientific applications, and being able to
change those designs whenever a different application is being executed. On the other
hand, an FPGA may be used to verify RTL code from a processor under development.
That re-programmability feature allows testing each RTL modification or addition.

In the context of SDV, FPGAs are a key component in the RTL development, and
therefore for the intermediate test chips and final chip. They allow verifying and testing
the RTL that is being implemented in a faster way than in simulation. In other words,
the frequency at which the FPGA can run is higher than the one at which a simulator can
work. In the current SDV testing flow, the first verification step is done in simulation, and
then more intensive testing is performed in FPGAs. Moreover, FPGAs permit testing of
the software stack that is being developed in the project.

The remainder of this section introduces the main components, design flows, and
concepts related to FPGA.

11

Chapter 3. Technical background 3.1. FPGA

3.1.1 Bitstream

A bitstream is a binary file that contains all the configuration information necessary to
program the FPGA. To be able to use an FPGA, the bitstream has to be loaded into the
FPGA board to configure its logic and interconnects, enabling it to perform a specific
task or function. Loading a bitstream file to an FPGA is denominated programming the
FPGA.

Bitstream generation is not a trivial process. It is based on a complex process to
synthesize the RTL code written in HDL into FPGA resources and interconnections.
More details about this process are explained in section 3.4.3.

Once the bitstream is programmed onto the FPGA, the board device operates ac-
cording to the logic and interconnects defined in the bitstream, performing the specific
task or function for which it was designed.

3.1.2 Resources

An FPGA contains a certain number of different resources, which are used to synthesize
the RTL code. The following components are tight to Xilinx FPGAs because they are
the ones used in the context of the thesis. The logical ones relevant for this master thesis
are:

e Look-Up Table (LUT)

It is the basic, fundamental, building block of an FPGA. A LUT is a small, config-
urable memory unit that is capable of implementing arbitrary combinational logic
functions [6]. It is a truth table that describes the output of the logic function for
each possible input combination. A LUT has N inputs, which represent its size,
typically for Xilinx FPGAs N = 6. LUTs can be used either as a function com-
puting engine or as a data storage element. Figure 3.2a shows a LUT structure
representation.

e Registers or Flip-Flop (FF)

It is a type of memory element to store and synchronize digital signals [7]. The basic
structure of a Flip-Flop (FF) includes: data input (D), clock input (CLK), clock
enable, reset, and data output (Q). When the clock signal transitions from a low
state to a high state (known as the rising edge), the data input is transferred to the
output. The output then retains this value until the next rising edge of the clock
signal, when the process repeats. The purpose of the clock enable pin is to allow
the FF to hold a specific value for more than one clock cycle. New data inputs are
only latched and passed to the data output port when both clock and clock enable
are equal to one. Figure 3.2b contains a FF structure representation.

e Digital Signal Processor (DSP)
It is a block dedicated to perform arithmetic operations, an Arithmetic Logic Unit
(ALU) [3]. DSPs are chains of three different engines: i) an add/subtract unit
connected to, i) a multiplier attached to, 4ii) an add/subtract/accumulate block.

12

Chapter 3. Technical background 3.1. FPGA

This implementation permits a DSP unit to fulfill functions of the form: P = B x
(A+D)+C or P+ = B x (A+ D). Figure 3.2c has a DSP structure representation.

e Block RAM (BRAM)
It is a dual-port RAM block that is designed to provide high-speed, low-latency,
on-chip memory storage [9]. There are two Block RAM (BRAM) sizes: 18k and
36k bits. As BRAMs have two ports, they allow parallel, same-clock-cycle access to
different locations. Figure 3.2d has a BRAM structure representation.

e Ultra RAM (URAM)
It is a single-clock, synchronous, dual-port memory building block [9]. Its size is 288
Kb, which equals eight times the capacity of a BRAM. Each Ultra RAM (URAM)
port can independently perform either one read or one write operation per clock cycle
per port. URAM is available in Xilinx Ultrascale+ FPGA architecture. Figure 3.2e
shows a URAM structure representation.

Those resources are part of the logic and routing logic of an FPGA. Figure 3.3 exhibits
a representation of that structure. The FPGA provider makes available resources through
building blocks that can be instantiated in the HDL, either manually or by the HDL
compiler, e.g. Vivado, a program that will be explained in Section 3.4.1.

set

FF

\ d_out F—

— «clk_en

/r — ek
x1 x0

X138691 02417

L]l][=][=]
-

reset

a) LUT structure. Source: [
]

—~

. WARETA 40447

(b) FF structure.
Source: [7].

] 48-Bit Accumulator/Logic Unit

- \
T T
—/Q: Mg DU

§ L

Pattern Detector

(c) DSP structure. Source: [5].

Figure 3.2: Internal structure of different FPGA resources.

13

Chapter 3. Technical background 3.1. FPGA

CASDOUTPA CASDOUTE
CASDOUTA CASDOUTPB 72
a2 4 82 4 zﬁi DIN-A

2 236-Kbit Block RAM] :EE)AR_A _;ZL
——4—{ DA DOUT_A
— ! omea — RPB-WRA SBITERRA |——
SALIEN [N Port & BWE_A DBITERR A [——

s o e INJECT_SBITERR_A

————| ENA INJECT_DBITERR_A

——»| aRsTA OREG_CE_A

——*| RSTREGA OREG_ECC_CE_A

HENERS

——*| RSTRAMA DOUTA ——"— RST_A
— o DOUTPA ——~—- SLEEP

36 Kb
Sleep Memory CLK
Aray

EE— CLKB

—————| REGCER OREG_ECC_CE_B

32 I 4 32 I 4 RST_B
CASDINA CASDINPE
CASDINE

CASDINPA

72
a2 32
7 DiNE DOUTE ——— 7L2 DIN_E
4
—~—»| ompe bouTPE — 764 ADDR_B
ﬁ/—pw ADDRB — EN_BE
4
——~——»| WEB ——— RDE_WR_E 72
| B Port B 541 ewEB DOUT_B 7L
e —— INJECT_SBITERR_B SBITERR B [
———»| RsTREGE
— INJECT_DEITERR_B DBITERR_B
———»| RSTRAME
—— OREG_CEEB

x21505101518

(d) BRAM structure. Source: [9]. (e) URAM structure. Source: [1].

Figure 3.2: Internal structure of different FPGA resources.

m m g [] voblock
[] Logic block
[all

[] Routing switch

\Routing fabric
[H o

N N]

Figure 3.3: FPGA logic architecture.

3.1.3 Timing
Timing in an FPGA refers to the behavior of the digital signals within the FPGA and

how they are synchronized with the clock signal [10]. Tt is determined by several factors,
including the clock frequency, the delay through the routing resources, the delay through

14

Chapter 3. Technical background 3.1. FPGA

the logic elements, and the setup and hold times of the FF; those factors are also known
as timing requirements.

The goal is to ensure that all of the signals in the design are stable and valid when
the clock edge arrives and that there is sufficient time for the signal to propagate through
the FPGA resources before the next clock edge. It is critical to ensure that the design
timing requirements are met to ensure that the design functions correctly and operates
at the desired speed.

Developers have to define the time requirements, which will be essential during the
bitstream generation process.

WNS

Worst Negative Slack (WNS) is a measure used in FPGA timing analysis. It represents
the maximum amount of time by which a path in the design fails to meet the timing
requirements. It is an important parameter to consider when verifying the performance
of a digital design. WNS is the largest negative slack value among all the paths in the
design and represents the worst-case timing violation [I1].

Regarding the WNS value, there are two possible scenarios:

e WNS < 0: It means that the path is violating the timing requirements.

e WNS > 0: It means that the path is meeting the timing requirements. Having
positive WNS shows that there is some margin in the design, so more RTL could
be added, for example.

To ensure reliable operation of a design, all timing paths must have either positive
or zero slack.

Setup and hold time

The setup time and hold time are timing requirements that determine the stable and valid
input conditions for a FF.

Setup time refers to the minimum amount of time that an input signal must be stable
and valid before the clock edge arrives. It ensures that the input signal has settled and is
stable, so that the FF can correctly capture the value of the input [12]. If the input signal
changes too close to the clock edge and does not meet the setup time requirement, it can
lead to incorrect data being captured by the FF, which is called setup time violation.

Hold time is the minimum amount of time that an input signal must remain stable
and valid after the clock edge arrives. It ensures that the input signal remains stable
during the FF’s internal operation [12]. If the input signal changes too soon after the
clock edge and does not meet the hold time requirement, it can lead to incorrect data
being propagated through the FF, which is named hold time violation.

A visual representation of a correct setup and hold time, and a setup and hold time
violation is shown in Figure 3.4.

15

Chapter 3. Technical background 3.1. FPGA

I Tsetup hold

/

I
I
I
I
I
I
I
I
I
I
I
I
I
I

e

1]
1 1
1 1
1 T
)]
]
/ 1
1 1 1
Clock i i] 0
. 1 1]
1] 1
{0 y o
1 1 1
1 1 t
OK | 1 1 | 1
| 1 1 1 1
| 1 1 1 1
Data — I 1 1 \ 1 1
| 1] 1] 1
Setup Violation | : : T 1
I 1 / 1 1 1 1
| 1 1 1 1
| 1]] 1
| 1 1 1 1
| Hold Violation | ' 1 . :
Figure 3.4: Setup and hold time violation signal dia-
gram. Source: https://www.designnews.com/electronics-test/

how-track-down-setup-and-hold-violations-mixed-signal-oscilloscope

When designing with FPGAs, it is key to meet the setup and hold time requirements
to guarantee a reliable and correct functioning of the design. Failing to meet these timing
requirements can lead to functional errors, timing violations, or other issues in the design.

3.1.4 Pins

The FPGA pinout is the mapping of the physical pins on an FPGA to the logical pins
used in an RTL design. In other words, the pinout defines which physical pins on the
FPGA are connected to which signals in the design.

It determines how the RTL can be linked to other components in the board, such as
memory, PCle, LEDs, an other interfaces [I1]. The pinout also determines the routing
of signals within the FPGA, which can affect the performance and power consumption of
the design. In the case of Xilinx FPGA, the pins are grouped in banks, which will affect
the bitstream generation.

FPGA pinouts are typically documented in the datasheet or user guide provided by
the FPGA manufacturer, and example of pinout diagram is shown in Figure 3.5. That
schematic view of the pin assignment corresponds to signals of the QSFP connector from
the FPGA used in this project. Each FPGA has its pin mapping, which has to be kept
in mind when adapting a design from one FPGA to another. Developers must define the
pinout when generating the bitstream.

16

https://www.designnews.com/electronics-test/how-track-down-setup-and-hold-violations-mixed-signal-oscilloscope
https://www.designnews.com/electronics-test/how-track-down-setup-and-hold-violations-mixed-signal-oscilloscope

Chapter 3. Technical background 3.1. FPGA

U1-13

¥XCVU3TPFSVHZ2892
BANK 135 MGTYTXPO_135_G48

MGTYTXMNO_135_(G49
MGTYRXPO_135_G53
MGTYRXNO_135_G54
MGTYTXP1_135 E48

Q5FP1_TX1_P
QSFP1_TX1_M
QSFP1_RX1_P
QSFP1_RX1_M
Q5FP1_TX2 P
Q5FP1_TX2 N
QSFP1_RX2 P
QSFP1_RX2_MN
QEFP1_TXZ P
O5FP1_TX3 N
QSFP1_RXZ P

MGTYTXNI_135_E48
MGTYHRXP1_135_F51
MGTYRXNT_135_F52
MGTYTXP2_135_C48
MGTYTXMNZ 135 C49
MGTYRXPZ_135_E53
MGTYRXMNZ 135 E54
MGTYTXP3 135 A49
MGTYTXNI_135_AL0
MGETYRXP3_ 135 D51
MGTYRXN3_135_D5&2
MGTREFCLEOP_135_P42
MGTREFCLKON_135 P43
MGTREFCLEK1P_135_M42
MGTREFCLKIN_135 M43

Q5FP1_RAX3_N
QEFP1_TX4_P
Q5FP1_TX4 N
QOSFP1_RX4_P
QSFP1_RX4_MN
Q5FP1_SISTO_CLOGK_P
OSFP1_SIST0_CLOCK N

Figure 3.5: XCVU37P I/O Bank 125 Diagram, pinout. Source: [13].

3.1.5 1IPs

An FPGA IP is a pre-designed and pre-verified building block that can be integrated
into an FPGA design to provide a specific functionality [11]. It eases the usage of FPGA
elements.

For example, a developer wants to use the DDR memory from the FPGA, but without
dealing with the DDR physical protocol, which would require implementing the DDR
controller from scratch. In that case, an IP can be instantiated, which offers an Advanced
eXtensible Interface (AXI) interface and it internally adapts the AXI signals into the
physical protocol (signals and timing) required by the DDR memory.

These 1P cores are typically provided as configurable, customizable, and reusable
components that can be integrated into a larger design.

Xilinx provides a wide range of IP cores that cover various functions and interfaces,
like memory controllers, Ethernet, USB, PCle, and many others. These IP cores can
be used to accelerate the design process, reduce development time, and improve the
performance and reliability of the overall system.

There are two IP types: hard and soft IPs. Those are defined in the sections below.

Hard IP

A hard IP is a functional block that is integrated into the FPGA as a fixed, dedicated
hardware module. Those blocks are integrated into the FPGA board at the manufactur-
ing stage, and cannot be changed or reconfigured by the user after the device has been
produced. Therefore, when using hard IPs in a design, they do not require logic FPGA
resources, such as LUTs.

Depending on the FPGA model, hard IPs support hardware features provided by
the FPGA: for example, the FPGA board used for this work embeds 16 PCle links, thus

17

Chapter 3. Technical background 3.2. SDV insfrastructure

allows the user to configure and instantiate the two hard IPs responsible for managing
the PCle, which are the PCle endpoint and the PCle clock.

Soft IP

A soft IP is a functional block that is implemented using programmable logic resources
within the FPGA. As a result, its usage increases the FPGA resource utilization.

Soft IP blocks are typically provided as synthesizable RTL code, which can be inte-
grated into a user’s design. They can be customized by modifying the RTL code or by
configuring the block’s parameters and options.

Compared to hard IPs, soft IPs offer greater flexibility and configuration options, but
may not provide the same level of performance. Soft IP blocks are also subject to the
constraints and limitations of the programmable logic resources within the FPGA.

3.2 SDYV insfrastructure

The objective of the Software Development Vehicles (SDV) infrastructure is providing
feedback to the architects designing EPAC-VEC and to the engineers implementing the
RTL. Additionaly, SDV offers porting, testing, benchmarking, and optimizing software
on the new proposed hardware as early as possible [I5]. In order to achieve them, a
hardware platform, mainly made up of FPGAs, and software tools have been developed.
This hardware and software combination is called SDVs.

The hardware platform is composed by RISC-V scalar CPU comercial boards (called
Arriesgado in our setup) and FPGAs. The SDV’s FPGA, referred to as FPGAQSDV from
now on, is an FPGA with some “glue logic* and the EPAC design, but the only accelerator
instantiated is one EPAC-VEC. The SDV hardware is placed in a cluster, called HCA,
and is managed with Slurm. More details about Slurm and the SDV hardware nodes are
given in the sections below. Figure 3.6 represents the cluster infrastucture.

The reason behind using SDV along with a RTL simulators, which provide detailed
simulations of the design and allow detecting bugs at RTL level, is that RTL simulators are
not the best choise when testing large-scale programs, like operating systems or scientific
applications. For reference, the process of booting a lightweight distribution of Linux in
the FPGAQSDV design consumes less than 5 minutes. Whereas, the simulation could
require hours, or even days. Therefore, leveraging the FPGAQ@SDV not only speeds up
the debugging process but also enhances the efficiency in rectifying any bug in the EPAC
core.

Slurm
Slurm is an open-source workload manager and job scheduler designed for HPC clusters. It

provides a centralized framework for managing and scheduling tasks, allocating computing
resources, and monitoring job execution in a distributed computing environment. Slurm

18

Chapter 3. Technical background 3.2. SDV insfrastructure

Arriesgado node mm

FPGA@SDV node m

Login | |
node

Figure 3.6: Hardware SDV infrastructure in our cluster.

enables efficient utilization of HPC resources and eases the execution of large-scale parallel
and batch processing workloads [16].

Slurm offers partitions, which are logical groups of computing resources within a
cluster. Each partition typically represents a subset of the cluster’s computing nodes with
similar capabilities, such as processor type, memory capacity, or network connectivity. By
defining partitions, system administrators can effectively manage and distribute workload
across different sets of resources.

Slurm is used in HCA to manage the Arriesgado and FPGA@QSDYV partitions.

Arriesgado

The Arriesgado partition is composed of seven distinct Arriesgado nodes. Each node is
a HiFive Unmatched board!, which is equipped with four RISC-V scalar cores operating
at 1 GHz. These nodes are key in compiling and testing binaries directly in the native
RISC-V architecture, so cross-compilation is not needed.

Pickle

There are four FPGA nodes known as Pickle, the so called FPGA@SDV nodes. Each
Pickle node consists of an x86 CPU with a VCU128 FPGA board, interconnected through
PCle, JTAG, UART, and Ethernet. The FPGA can be reprogrammed via the x86 core,
which also serves to load the Linux image and initiate a UART shell or SSH connection.
More details about those interfaces are explained in Section 3.3.1.

Those Pickle nodes can be accessed through two different partitions. In other words,
the 4 Pickle nodes can be allocated via 2 partitions, which share the nodes.

The first partition is fpga-sdv. When you request a Pickle node from that partition,
the FPGA is configured by Slurm and the user gets a ready-to-use FPGA. The second
partition is called fpga and when the users allocates it, you have to configure manually the
FPGA. The fpga-sdv partition targets users who do not need a custom bitstream, so they
use bitstreams previously built by ourselves, the SDV team. Whereas the fpga partition
is aimed at developers who require a specific, custom bitstream build by themselves. It
is mostly used by the SDV team.

'HiFive Unmatched https://www.sifive.com/boards/hifive-unmatched

19

https://www.sifive.com/boards/hifive-unmatched

Chapter 3. Technical background 3.3. VCUI128

3.3 VCU128

The FPGA board used in EPAC is the Virtex Ultrascale+ HBM VCU128 FPGA Evalua-
tion Kit [3], which has the Xilinx Virtex UltraScale+ VU37P HBM (XCVU37P) FPGA.

An evaluation kit is a board that integrates hardware (such as RAM memory), IPs,
design tools, and pre-verified reference designs, to ease the development of designs and
applications [17].

The VCU128 offers different types of connections and features, the most relevant
ones for this thesis and the SDV design are defined in Table 3.1.

ID | FPGA Component | Usage in FPGA@SDV

1 | XCVU37P FPGA EPAC core

2 | 8 GB of High Memory Bandwidth (HBM) | Tracer memory

3 | 4.5 GB of DDR4 Core memory

4 | PCle Gen3 x16 or Gen4 x8 Offloading of the Linux image

5 | USB UART-JTAG UART shell and ILA debuging

6 | 10/100/1000Mb/s Ethernet SSH connection and access to NFS

Table 3.1: Components from the board VCU128 and their correspondant usage in the
SDV design.

Figure 3.7 shows a VCU128 board with the SDV relevant components identified,
following the ID numbers from Table 3.1.

3.3.1 Usage in FPGA@QSDV

The FPGA@SDYV design is formed by the EPAC accelerator RTL and some called “glue”
logic (FPGA shell). That design is loaded into the XCVU37P FPGA. The FPGA shell
makes possible: i) usage of memory, i) communication with the FPGA /core, and iii)
debugging RTL.

Both available memories are used in FPGA@SDV: DDR4 and HBM; but the DDR4
is the one used as memory by the EPAC accelerator, and the HBM memory is utilized for
debugging purposes. The DDR4 is where the Linux image is loaded and it is accessible
through DMA, a communication protocol, engine between devices (more details about

DMA are provided in Section 4.2).

Communications with the core can be performed in different ways, depending on
the objective. The PCle interface is used to load, write, the Linux image from the host
into the FPGA’s DDR4 memory, allowing the core to boot Linux. The USB UART is
utilized to open a UART shell. UART is a serial communication protocol between devices.
Therefore, an interactive session can be opened in the Linux image booted at the FPGA,
from the EPAC core. Finally, the last communication interface used is the Ethernet,
which allows establishing an SSH connection.

20

Chapter 3. Technical background 3.3. VCUI128

& XILINX.

*HW-U1-VCU128
1.0 -
@, #O .
X0
- VIRTEX,
URraSCALE +

»

FUCR

czve c290c287

€08 Caow

o R
worve ©F 3 58
l o

PCle EPGE

Figure 3.7: VCU128 board with key components identified.

21

Chapter 3. Technical background 3.4. Xilinx Software Environment

VCU128 board

DDR4 HBM
» PCle
|
UART
JTAG VU37P FPGA
|
» Ethernet

Figure 3.8: Pickle node connections between the VCU128 and the x86 host.

To debug the RTL the components utilized are HBM and Integrated Logic Analyzer
(ILA). The HBM is used to store information for a partner tool called “tracer”, which is
used to debug the scalar core. The ILA is a logic analyzer core that allows monitoring
internal signals of a design [18]. A JTAG connection is required to read the ILA outputs.

Figure 3.8 shows a schematic of a Pickle node. It can be observed the previously
mentioned connections and resources.

3.4 Xilinx Software Environment

Xilinx is a company dedicated to designing and manufacturing FPGAs and other pro-
grammable logic devices. Moreover, it develops its own software tools and IP cores, to
enable users to create and customize FPGA designs more easily and efficiently.

3.4.1 Vivado Design Suite

Vivado Design Suite (from now on Vivado only) is a set of software tools from Xilinx. It is
used for designing, simulating, and implementing digital circuits and systems on Xilinx’s
FPGAs and other programmable devices. It provides an integrated development envi-
ronment (IDE) with both a graphical user interface (GUI) and a command-line interface
(CLI) for developing and deploying designs on Xilinx’s devices [19].

Vivado supports HDLs, such as Verilog and VHDL, and high-level synthesis lan-
guages, like C and C++.

A Vivado project is a set of design files and settings used to design, implement, and
program a specific FPGA. The design files include RTL, constraint, and simulation files.

22

Chapter 3. Technical background 3.4. Xilinx Software Environment

epac_core- i ion i - corexpr] - Vivado 2022.1 (on synth-1) -+ x
File Edit Flow Tools Reports Window Layout View Help =~ O Quickaccess write_bitstream Complete +/
@, « =] >, N oo X ¥ Default Layout v

Flow Navigator “ 8 PROJECT MANAGER - epac_core 2 x

 PROJECT MANAGER .

Sources 2 _ 05X Project Summary 200X
£ settings
z 2 overview | Dashboard
Add Sources a +ia = sehposr
> = Design Sources (54 ~

Language Templates

> = Constraints (2 Settings Edit
P Catal .
F IP Catalog » = Simulation Sources Project name epac_cors
> & Utilty Sources (3 Project location: Jscratchjaquerolintegration_qdma/fpgalproject
v IP INTEGRATOR Product family: Virtex UltraScale+ HBM
Create Block Design Project part: Virtex Ultrascale+ HBM VCU128 Evaluation Platform (xevu37p-fsvh2802-2L-2)
Open Block besign Top module name: epac_full wrapper_top_board
Target language Verilog
Generste Block Design oo oo e e Simulator language: Mied
Hierarchy | P Sources Lbraries Compile Order
v SIMULATION ;
: : 2 . Board Part
o Simulation Synthesis Run Properties _ooEx
v synth 1 - o Display name Virtex Ultrascale+ HEM VCUL 28 Evaluation Platform
~ RTLANALYSIS ~ | Boardpartname: ilnxcomvcul28:part0:1.0
Name; synth 1
+ open Elaborated Design n Yt Board revision: Rev 1.0
Part: @xowi37p fsvh28s2-2Le (active) | [Connectors: No connections
Repositorypath: Jopt/llindVivado/2022.1/dataihublboards
v SYNTHESIS Description: Vivado Synthesis Defaults
URL: wwxilinx. comiveu 28
P Run Synthesis Status: synth_design Complete! Board overview: Virtex Ultrascale+ HBM VCU1 28 Evaluation Platform
> Open Synthesizad Design e e v | cnanges
| | Properties Options Log Reports Messages R SHi
~ IMPLEMENTATION

¥ Run Implementation Td Console x Messages |Log |Reports | Design Runs

> Open Implemented Design Qs N1 e E G
| Scanning sources -~
~ PROGRAM AND DEBUG ! Finished scanning sources

| INFO: [IP_Flow 19-234] Refrestiing IP repositories
© INFD: 1P Flow 19-1700) Loaded user IP repository ' /scratch/aguerol/integration qina,fpga/ip’.
3 open Hardware Manager | INFD: 1P Flow 19-2313] Loated Vivado IP repository '/opt/Xilime/Vivado/2022. 1/data/ip’

J8 Generate Bitstream

| CRITICAL WARNING: [Common 17-1840] The Vivado message database '/scratch/auerolsintegration qnms/fpgs/prn]ect/epsn core.runs/impl_1/place_design.ph’ contains 01451 messages. Restoring all messages frc
open_project: Time {s}: cpu = 80:08:16 ; elapsed = 00:00:07 . Memory (MB): peak = 7898.72% ; gain = 320, : free physical = 48208 ; free virtual = 184187
T set_property needs_refresh false [get_runs synth_1 -
B v
< 2>
[

Figure 3.9: Screenshot from Vivado Design Suite GUI.

A Vivado project requires defining the target device, which can be a board (evaluation
kit) or part (FPGA chip only).

Figure 3.9 shows a Vivado Design Suite GUI with a project opened. On the left,
there is access to the different features and tools provided. The relevant ones for this
thesis are the IP Integrator, Synthesis, Implementation, and Program and Debug.

The Vivado version used in this thesis is Vivado 2021.2.

Vivado IP Integrator

The Vivado IP Integrator is a graphical tool for integrating and customizing IP cores,
which can be provided either by Xilinx or by other developers [19].

It allows the creation of Block Designs (BDs), which are graphical representations of
a set of IPs and interconnections. In other words, a BD is a way to visually organize and
interconnect different soft and hard IPs.

In the Vivado IP Integrator, when a BD is opened, IPs can be instantiated, cus-
tomized, and connected. The graphical representation of an IP shows the input and
output interface and allows configuring its parameters. In Figure 3.10 there is a Vivado
IP menu: on the left, there is the IP graphical representation with its input/output signals,
and on the right, there is the configuration part with different tabs.

Figure 3.11 shows an example of BD with 2 IPs interconnected and 3 of their signals
marked as external. Marking a signal as external allows connecting those signals to FPGA
physical pins or other signals in the RTL code. Otherwise, those signals would remain
local to the BD, hence not accessible from outside the BD.

23

Chapter 3. Technical background

3.4. Xilinx Software Environment

@ Documentation

[J show disabled ports

Queue DMA Subsystem for PCI Express (4.0)

IP Location C Switch to Defaults

" + usr_irg

" 4+ dsc_crdt_in
sys_clk
sys clk_gt
sys_rst_n

soft_reset n

M_AXI ==
pcie_mgt ==
pcie_cfg_ext ==
tm_dsc_sts ==
gsts_out ==
user_Ink_up
axi_aclk
axi_aresetn

phy_ready

Re-customize IP

Component Name | gdma_0

Basic Capabilities PCle:BARs PCle: MISC PCle: DMA Debug and Additional Options
Functional Mode | QDMA -
Mode Advanced v
PCle Port type and Block location GT Selection
Device / Port Type | PCl Express Endpoint device [Enable GT Quad Selection
PCle Block Location | PCIE4C XOVO - 6T Quad GTY Quad 127
PCle Interface AXI Interface
Lane Width X8 AX| Data Width 256 bit v
X Clock Frequency | 250 ~

Maximum Link Speed

(0 16.06GTis

.5 GT/s () 5.0GT/s 8.0 GT/s

Reference Clock Frequency (MHz) | 100 MHz

Reset Source PCle User Reset
GT DRP Clock Selection Internal

Free Running Clock Frequency (MHz) | 100 MHz

Figure 3.10: Vivado IP menu from a Xilinx QDMA IP.

BLOCK DESIGN - design_1 * 2?2 X
Sources Design x Signals ? _ O |Diagram x AddressEditor x| Address Map x 200G
a = " & |a a il ¥ o aq + E #, C o = Defaultview v o
design_1
> External Interfaces
> Interface Connections
> Ports
> Nets
» ¥ qdma_0 stem for PCI Express:4.0) X
» % util_ds_buf (Utility Buffer:2.2) util_ds_buf adma_0
IBUF_OUT(0:0] M_AXI +
||+ cLk N D . .
IBUF_DS_ODIV2[0:0] M+ use pcie_mgt + |||====={"> pci_express_x8
usr_irg - =
- peie_cfg_ext + ||
|+ dsc_crdt_in
Utility Buffer tm_dsc_sts + ||
sys_clk -
qsts_out + |||
sys_clk_gt
= X user_Ink_up
Block Properties ?2 -0 X pcie_perstn [sys_rstn i aclk
! axi_ac
3 soft_reset_n -
¥ adma_0 - e R axi_aresetn
Q| = & @ 0 i phy_ready
ALLOWED_SIM_MODELS rth W
== Queue DMA Subsystem for PCl Express
cLass bd_cell
> CONFIG
LOCATION 2220 -40 &
MNAME qdma_o Vs
e s v | peierefelk D—
General Properties P

Figure 3.11: Vivado IP menu from a Xilinx QDMA IP.

24

O

Chapter 3. Technical background 3.4. Xilinx Software Environment

3.4.2 Constraints

Xilinx has developed a format of defining timing and pin requirements for their FPGAs
called Xilinx Design Constraints (XDC). XDC consists of commands defining the require-
ments that must be met during the bitstream generation, so the design is functional on
the board [20].

The FPGA timing and pin requirements are known as constraints in the Xilinx
environment. Therefore, they are defined in an XDC file.

Timing constraints

The timing constraints allow defining clocks. Listing 3.1 contains an example of a timing
constraint, linking the ddr_clk port to the clock driven by mmcm_clkoutO.

set ddr_clk [get_clocks mmcm_clkoutO]

Listing 3.1: XDC timing example.

Pinout constraints

Two properties are used to define pinout constraints: PACKAGE_PIN and IOSTANDARD.

PACKAGE PIN property defines a specific assignment of a port in the logical design to
a physical package pin in the FPGA [21].

TIOSTANDARD is used to specify with which programmable IO Standard a port has
to be configured [21]. An IO Standard is a predefined voltage. The possible values of
TIOSTANDARD are not relevant to this thesis.

Those properties are usually defined together and its syntax is shown in Listing 3.2.
Hence, assigning an IO standard to a port means defining at which voltage that port will
work, since some pins support different voltage levels. However, not all physical pins must
have an 10 standard defined.

set_property PACKAGE_PIN pin_name [get_ports port_name]
set_property IOSTANDARD value [get_ports port_name]

Listing 3.2: XDC PACKAGE PIN and IOSTANDARD syntax.

Listing 3.3 contains an example of a pinout definition using both properties.

Designates STATUS to be placed on pin B26

set_property PACKAGE_PIN B26 [get_ports STATUS]

Sets the I/0 Standard on the STATUS output to LVCMOS12
set_property IOSTANDARD LVCMOS12 [get_ports STATUS]

Listing 3.3: XDC pinout example.

25

Chapter 3. Technical background 3.4. Xilinx Software Environment

RTL BD XDC

/Syﬂhesis

Netlist

Implementation

Bitstream information

Bitstream generation

Bitstream file

Figure 3.12: Bitstream generation flow in Vivado.

3.4.3 Bitstream generation

Bitstream generation is a complex process with different phases.

Firstly, a netlist from the design needs to be generated. A netlist is a gate-level list
with all the connections between the various FPGA logical resources of a design. This
step is known as synthesis and its output is the netlist.

Secondly, placement is performed using as input the netlist generated during syn-
thesis. The placement consists of mapping the logical resources from the netlist into the
specific physical locations following the physical constraints of the FPGA. This step is
known as placing.

Thirdly, those placed resources are connected with the available interconnect re-
sources on the FPGA. Taking the result of the placement phase, it is determined the best
paths to connect them, so the timing is optimized and the constraints are fulfilled. This
step is known as routing.

Finally, the bitstream file is generated, ending up the process with a file where all the
necessary information for the FPGA is written. The bitstream is loaded onto the FPGA
to configure its logic and interconnects.

The program used to generate bitstreams is Vivado, since the FPGAs used in EPI
are from Xilinx. In the Vivado workflow, the first step is also called synthesis, while
the second and third ones are grouped into a step named implementation. Figure 3.12
illustrates the Vivado bitstream generation flow.

Those phases need different complex algorithms (NP-Complete), which are optimized
with heuristics to reduce the bitstream generation time. As they are algorithms based on
heuristics, the final bitstream can change from one run to another.

3.4.4 Resource utilization
Vivado offers the possibility of extracting the number of FPGA logic resources estimated

after synthesis and the actual number of resources used after implementation. It is known
as resource utilization.

26

Chapter 3. Technical background 3.4. Xilinx Software Environment

o CLB LUTs CLE Registers CARRYS F7 Muxes F8 Muxes
Name B

(1303680) (2607360) (162960) (651840) (325920)

v ¢ dbg_hub 434 741 7 0 0
~ [T inst (x 3_0_0_xsdbm 434 741 7 0 0
v [I] BSCANID.u_xsdbm_i 434 741 7 0 0
> [I] CORE_XSDB.U_ICON (xsdb 16 28 0 0 0

> [I] CORE_XSDB,UUT_MASTER 262 554 6 0 0
SWITCH_N_EXT_BSCAN.bscan_inst (It 0 0 0 0 0
SWITCH_M_EXT_BSCAN.bscan_switch 122 125 1 0 0

Figure 3.13: Resource utilization report from Vivado GUI.

Vivado shows a hierarchical table whose first column contains module’s names and
the subsequent columns hold the different FPGA resources exploited in the design. The
resource usage can be expressed in absolute numbers or percentage form. Figure 3.13
shows it with absolute numbers.

27

Chapter 4

PCle and DMA

This chapter contains more technical information. The reasoning for having the technical
knowledge separated is that the previous chapter is composed of information that I already
knew prior to this thesis, whereas this chapter’s data was new for me and I had to dedicate
time to look for documentation and understand it.

For this reason in this chapter, firstly, an explanation of PCle architecture, DMA
protocol and AXI protocol is provided in Section 4.1, Section 4.2, and Section 4.3, respec-
tively.

Secondly, the Xilinx DMA subsystem for PCle called XDMA is described, which is
a Xilinx soft IP, in Section 4.4.

Thirdly, the RDMA protocol is exposed in Section 4.5, as the next Xilinx IP imple-
ments it. Remote Direct Memory Addressing (RDMA) is targeted for high-performance
DMA transferences.

Fourthly, and lastly, the Xilinx PCle subsystem implementing high-performance
DMA (RDMA) is explained. It receives the name QDMA and it is detailed in Section 4.6.

All these concepts had to be fully understood to be able to proceed with the technical
development of this thesis.

4.1 PCle architecture

Peripheral Component Interconnect Express (PCle) is a high performance 1O bus stan-
dard used to interconnect peripherals devices [22]. Tt has applications in computing and
communication platforms. PCle is commonly used for connecting graphics cards, network
cards, sound cards, FPGAs and other peripherals to the host processor.

PCle is a faster and more flexible alternative to previous generation bus architectures,
such as Peripheral Component Interconnect (PCI). It uses a serial and high-speed point-
to-point interface for communication between two devices; whereas PCI uses a parallel
interface. That difference is key, since a serial interface allows for higher data transfer
rates than the parallel interface used by older standards.

28

Chapter 4. PCle and DMA 4.1. PCle architecture

Or PCle3 x8 CPU1

) \:“
i | i o el 5
T
ISLOT2 PCIe3 x16 CPUORY
i 3 5 (X

R e |

IIIllllllllllllllIIIIIIIIlIIIlIIIIIlllllllllllllllllllllllllI‘lI' e

Figure 4.1: Motherboard with PCle slots of x16 and
x4 lanes. Source: https://superuser.com/questions/1541083/
how-to-choose-the-right-gpu-topology-pcie-lanes-for-multiple-gpus

PCle supports the same communication model as PCI. It supports the following
transaction types: memory read/write, 1O read/write, and configuration read/write.

There are several generations of PCle, each one with higher transfer rates, hence
higher bandwidth (BW). Table 4.1 shows a comparison between the different PCle gen-
erations. All generations are backward compatible. Moreover, PCle architecture is com-
patible with the PCI one.

A PCle point-to-point interconnection is called lane. A lane consists of two pairs
of differential signals: txn, txp, and rxn, rxp. The tx signal pair is for transmitting
(writing) data. The rx signal pair is for receiving (reading) data. The interconnection
can have x1, x2, x4, x8, x12, x16 or x32 lanes. The bandwidth of the interconnection is
determined by the number of lanes and the PCle generation.

Typically, a peripheral with a PCle connection is plugged into a motherboard with a
PCle connector, called a PCle slot. On the one hand, Figure 4.1 displays PCle slots with
different lane sizes. On the other hand, there is a peripheral PCle connection shown in
Figure 3.7, identified with the number 4.

29

https://superuser.com/questions/1541083/how-to-choose-the-right-gpu-topology-pcie-lanes-for-multiple-gpus
https://superuser.com/questions/1541083/how-to-choose-the-right-gpu-topology-pcie-lanes-for-multiple-gpus

Chapter 4. PCle and DMA 4.1. PCle architecture

PCle Generation
Measure PCle 1.x ‘ PCle 2.x ‘ PCle 3.x ‘ PCle 4.x ‘ PCle 5.x
Raw bit rate 25 GT/s | 5.0GT/s | 8.0 GT/s | 16.0 GT/s | 32 GT/s
Interconnect BW 2 Gb/s 4 Gb/s 8 Gb/s 16 Gb/s 32 Gb/s
BW Lane Direction || 250 MB/s | 500 MB/s | 1 GB/s 2 GB/s 4 GB/s
Total BW x16 8 GB/s 16 GB/s | 32 GB/s| 64 GB/s | 128 GB/s

Table 4.1: PCle rate and bandwidth comparison between different PCle
generation. Source: https://blogs.synopsys.com/expressyourself/2017/08/15/

1-2-3-4-5-its-official-pcie-5-0-is-announced/.

4.1.1 Interrupts

An interrupt is a signal sent by the hardware to the processor, which has to handle it
[23]. In the context of PCle, an interrupt is sent by the peripheral to notify an event to
the CPU, such as the completion of a transference.

Each PCle device has a unique interrupt number, also known as an interrupt request
line. That number is then read and used by the corresponding device driver and device

[23].

PCle supports two interrupt mechanisms: legacy interrupts and Message Signal In-
terface (MSI). The former is from the PCI bus, and the latter is the native PCle interrupt
delivery mechanism. Both interrupt types are supported since PCle is backward compat-
ible with PCI.

Legacy interrupts use one of the interrupt lines to signal interrupts. The interrupt
line can be INTA, INTB, INTC, or INTD, which were defined for the PCI bus. In the PCI
architecture, those interrupt lines are physical pins, which are asserted and de-asserted.
Whereas, in the PCle architecture, it is optional to support legacy interruptions, and if
supported, an in-band message is defined to act as virtual INTx wires [22].

MSI is implemented as a PCle memory write transaction written to an Interrupt
delivery address [22]. Tt is more efficient and allows more interrupts per card than legacy
interrupts. That is because each device has a unique MSI address and can send a message
directly to the CPU without having to share the interrupt line with other devices.

An extension of MSI was defined, called MSI eXtended (MSI-X), to provide more
interrupt vectors. It allows signaling multiple interrupts by a single device. MSI-X uses
a table to map device interrupt requests to messages and interrupt vectors. Devices
supporting MSI-X feature a dynamically programmable hardware table. The MSI-X table
is usually programmed by the device driver during initialization [24].

4.1.2 Functions

A PCle function is a logical device within the PCle device that performs a specific func-
tion, with its own set of resources [22]. A PCle device can have one or more functions,

30

https://blogs.synopsys.com/expressyourself/2017/08/15/1-2-3-4-5-its-official-pcie-5-0-is-announced/
https://blogs.synopsys.com/expressyourself/2017/08/15/1-2-3-4-5-its-official-pcie-5-0-is-announced/

Chapter 4. PCle and DMA 4.1. PCle architecture

each one with a unique PCle function number. In other words, in the same PCle slot,
there can be different PCle functions, logical devices.

For example, a PCle network card can have multiple Network Interface Cards (NICs)
and each one be logically separated, reporting different functions.

Physical function

A Physical Function (PF) refers to a specific instance of a PCle function within a device,
which serves as the primary function of the device. The PF typically provides the main
functionality of the device and acts as the interface to the host system. Therefore, it is
responsible for handling device initialization, configuration, and communication with the
host system.

Virtual function

Virtual Functions (VFs) represent additional functions instances within the device and
provide additional functionality or features. VF's are created and managed by the PF.

VFs are typically used in scenarios where the device needs to be shared by multiple
users or Virtual Machines (VMs). Each VF can be assigned to a specific user or virtual
machine, enabling resource partitioning and isolation. That is because each VF has its
own configuration space and can be independently configured and controlled.

Single Root I/O Virtualization (SR-IOV)

SR-IOV is a technology that allows a single physical PCle device to be virtualized and
shared among multiple VM or containers. It is an extension of the PCle specification [25].
It enables direct and efficient access to the device’s resources by the virtual instances,
improving performance and reducing overhead.

Traditionally, when multiple VMs or containers share a physical device, the hypervi-
sor or host Operating System (OS) manages the device access and performs 1O virtual-
ization, which introduces overhead and can limit the performance of the shared device.

With SR-IOV, a physical PCle device is partitioned into multiple VFs and a single
PF. The PF represents the primary interface to the device, and the VFs represent the
virtual instances of the device. VFs appear as separate physical devices to the VMs or
containers, allowing them to directly access the device’s resources without involving the
hypervisor or host OS.

By bypassing the virtualization layer, SR-IOV improves IO performance and reduces
latency. It also enables efficient sharing of resources, as each VF can be independently
allocated and managed, providing isolation between VMs or containers.

31

Chapter 4. PCle and DMA 4.2. DMA protocol

CPU Memory
A A
! i ! Y !
v -
System bus i o : >
Path with ! A | Path with
no DMA _. . DMA
Y Device Device ¥
controller controller
w/o DMA w/ DMA
I/0 device I/0O device

Figure 4.2: Simplified diagram of the data tranfer without DMA (in red) and with DMA
(in green).

4.2 DMA protocol

Direct Memory Addressing (DMA) is a hardware mechanism that allows data to be trans-
ferred between devices without involving the CPU [23]. In other words, peripheral com-
ponents can move data directly to and from CPU memory with no processor intervention.

In a typical computer system, data is transferred between devices such as hard drives
or network adapters via the CPU. This means that the processor must handle all data
transfers, which can be time-consuming and can limit the overall performance of the
system. Therefore, the usage of DMA can i) improve throughput to and from a device as
it reduces the computational overhead, and i) increase system performance due to the
reduction of the load on the processors and freeing it up to perform other tasks.

The DMA controller takes controll over the system bus and transfers data between
the device and memory without involving the CPU. A simplified representation of the
difference between a data transfer using DMA or not is illustrated in Figure 4.2.

DMA data transfers can be triggered via the software asking for data with functions,
such as read or write, or via the device asynchronously pushing data to main memory
[23]. The relevant trigger method for this thesis is the first one, hence the focus will be
on that one.

The steps for a DMA read data transfer triggered by software are:

1. When a process calls read, the driver method allocates a DMA buffer and sends a
request to the device to transfer its data into that buffer. Then, the process is put
to sleep.

2. The device writes data to the DMA buffer, in the main memory, and raises an
interrupt when it has finished.

32

Chapter 4. PCle and DMA 4.2. DMA protocol

@f- Drive

1.CPU
programs DMA Disk Main
CPU the DMA controller controller mamary
controller P Buffer
L]
~ ™
4. Ack [
J‘-__,...---'—_—'---.._“
4 | I L
Interrupt when 2. DMA raquests
done transfer to memory |_3. Data transterred
~—Bus

Figure 4.3: DMA read transfer issued to a memory disk. Source: https://examradar.com/

direct-memory-access-questions-answers/

3. The interrupt handler gets the input data, acknowledges the interrupt, and awakens
the process, which is now able to read data.

Figure 4.3 shows a DMA read transfer that is targeting a memory disk device.

The DMA write follows the same scheme as the DMA, but instead of transferring
from device memory to main memory, it moves data the other way around: from main
memory to device memory.

4.2.1 DMA gather/scatter transfers

In a standard DMA transfer, a device can only transfer data to or from a contiguous block
of memory. This can be inefficient when data from non-contiguous memory locations
need to be transferred, as it requires multiple DMA transfers to be performed (one per
memory block). That would increase the overall overhead of the transfer and reduce
system performance.

Therefore, instead of doing one DMA transfer per memory address, a unique DMA
transfer can be issued. The DMA controller receives a “scatter/gather” buffer list and
it is responsible to fetch the corresponding memory blocks. That allows issuing a single
transfer, improving the overall performance.

Not all architectures support DMA gather /scatter transfers.

4.2.2 DMA support in PCle

PCle supports DMA, which improves the overall performance of PCle operations.
There are two types of DMA transfers in PCle:

e DMA read: Data is transferred from device memory to main memory.

33

https://examradar.com/direct-memory-access-questions-answers/
https://examradar.com/direct-memory-access-questions-answers/

Chapter 4. PCle and DMA 4.3. AXI protocol

Write request channel

Address and
control
—>
Write data channel
Manager Write Wirite Write Write Subordinate
interface data data data data interface

> > > >

Write response channel

Write
response

-

Figure 4.4: Channel architecture of write transactions. Source: [26].

e DMA write: Data is transferred from main memory to device memory.

DMA descriptors are necessary to perform them. They contain the information “de-
scribing” the data transfer with information such as the source and destination addresses.

4.3 AXI protocol

Advanced eXtensible Interface (AXI) is a high-performance, point-to-point protocol to
connect Manager and Subordinate components to exchange data [26]. It is part of the
AMBA (Advanced Microcontroller Bus Architecture) specification. Due to its purpose,
it is useful to connect IPs in FPGA designs.

The AXI protocol offers separated address/control and data phases. It is based on
using different channels for reading and writing, which provide low-cost DMA [20].

A channel is a set of signals with a defined purpose. There are three types of channels,
which transfer requests, data, and responses. The specific signals of each channel are not
relevant in this thesis scope. For the write transactions, the three channel types are used,
as is shown in Figure 4.4. For the read transactions, only the request and data ones as
Figure 4.5 illustrates.

There are different versions of the AXI protocol, each one providing a range of features
and flexibility to meet the diverse requirements of different applications. The three types
of AXI interfaces are:

e AXI: It is the full version of the protocol. It is also known in the industry as AXI
Memory-Mapped (AXI-MM), since it requires memory addresses.

34

Chapter 4. PCle and DMA 4.4. XDMA Xilinx IP

Read request channel

Address and
control
> .
Manager Subordinate
interface interface

Read data channel

Read Read Read Read
data and data and data and data and
response response response response

< < << <

Figure 4.5: Channel architecture of read transactions. Source: [2(].

e AXI-Lite: It is a simplified version of the AXI. It supports a subset of features,
making it simpler but with lower throughput.

o AXI4-Stream (AXI-ST): It is a specialized version of the AXI targeting streaming
data applications [27]. It supports a continuous stream of data without addressing
(without address channels) and requires fewer resources than the AXI.

4.4 XDMA Xilinx IP

The Xilinx DMA (XDMA) Xilinx IP is a PCle DMA subsystem [28]. It is a high-
performance DMA engine integrated into Xilinx FPGAs with PCle connectivity. The
XDMA 1IP provides a scalable, high-bandwidth, and low-latency data transfer solution
between the host computer and the FPGA board.

The features that XDMA offers and important for this thesis are:

e Up to 4 host-to-card (H2C) data channels and up to 4 card-to-host (C2H) channels.
The H2C channels are for the write operations from the host, and the C2H channels
for the read ones.

e A user interface that can be AXI-MM or AXI-ST.

e Interrupts can be legacy, MSI, or MSI-X.

However, it does not support SR-IOV. In addition to the limitations of this IP, it only
supports 1 PCIe PF. These implies that the design with XDMA for the MEEP cluster
cannot work, as XDMA does not support virtualization.

The XDMA IP exploited in FPGAQSDV is configured to be able to use all 4 channels
per direction and the AXI-MM user interface.

The XDMA subsystem allows moving data between the host and FPGA memory by
operating on DMA descriptors. Those descriptors carry information about the source and

35

Chapter 4. PCle and DMA

4.4. XDMA Xilinx IP

User
Logic

DA Subsystem for PCle

AXI Write L T
el Interface (MM |- = channels [
or §T)
RQ/RC
Interface
AXl Read L
C2H
Interface (MM - >
or ST) Channels
* IRQ Module
Cfg Master
- (AXI4-Lite
Master)
Cfg Master cq/cc
®| (AXI4 Lite Slave) Bridge ["™| Interface
Host DMA
-+ Bypass (AXI MM
Master)

Integrated Block FPCle RX
for PCle IP (with [
Wrapper as
needed)
Configured PCleTX
as EndPoint -
nssoes

Figure 4.6: XDMA diagram. Source: [2]

36

Chapter 4. PCle and DMA 4.4. XDMA Xilinx IP

destination addresses, and the amount of data to transfer. The transfers can be in both
H2C and C2H directions.

Figure 4.6 contains the IP diagram. The arrows represent the bus connections be-
tween entities inside and outside the XDMA IP, which can be uni or bi-directional. The
user logic block (on the left) represents the RTL connected to the IP design, i.e the logic
that an RTL developer has to connect to the IP. The big block named DMA Subsystem
for PCle represents the XDMA TP with its engines. The focus of this section will be on
AXI Write Interface, AXI Read Interface, and IRQ) Module. On the right, there are two
buses, PCle RX and PCle TX, that correspond to the physical PCle connection.

4.4.1 Components

As could be seen previously, the XDMA IP is formed by different engines. Each channel
is a DMA engine, so 8 DMA engines share the AXI-MM user interface.

From a high-level point of view, the H2C channel reads from the PCle physical
interface, PCle RX, and sends what it has received to the user logic. The C2H channel
behaves similarly, it reads from the user application and sends that data to the PCle
physical interface PCle TX.

H2C Channel

The H2C channel takes care of DMA transfers from the host to the card. When it receives
a transfer:

1. The DMA engine issues reads to the PCle Requester reQuest (RQ) block, which
means sending read requests to the host.

A transfer is previously split into requests depending on the maximum request size
defined.

2. The data from the host is received through the Requester Completion (RC) block.
3. H2C block issues write requests to the user interface.

4. After completing a transfer, the DMA engine issues an interruption or writeback to
notify the host.

Figure 4.7 illustrates the previous steps.

C2H Channel

The C2H channel handles DMA transfers from the card to the host. The transfer pro-
cessing consists in:

1. The DMA engine issues read requests to the user logic.

37

Chapter 4. PCle and DMA 4.4. XDMA Xilinx IP

< RQ
1
User 3 H2C |
Logic Channel [,
2
4 RC
Y
IRQ
Module

Figure 4.7: Diagram of a H2C transfer. The numbers correspond to the ones for the steps
explained in the corresponding section.

» RQ
2
User 1 C2H [
Logic Channel [,
3
4 RC
Y
IRQ
Module

Figure 4.8: Diagram of a C2H transfer. The numbers correspond to the ones for the steps
explained in the corresponding section.

2. Once the data is received, C2H engines issue a write request via the R(Q block.
3. The RC block delivers the write request completion to the C2H block.

4. After completing a transfer, the DMA engine issues an interruption or writeback to
notify the host.

Figure 4.8 illustrates the previous explanation.

TRQ Module

The TRQ module is resposible for generating interruptions over the PCle link and receiving
interrupts from the user application and from each DMA channel. It supports legacy, MSI,
and MSI-X interruptions.

4.4.2 QOperations

The DMA operations must move data between the host and FPGA memory. The host is
responsible for allocating a buffer in its system memory and preparing the DMA descrip-
tors. Those tasks are performed via a driver.

38

Chapter 4. PCle and DMA 4.4. XDMA Xilinx IP

In an H2C transfer, the source address is a PCle address and the destination is an
AXI address. Whereas in a C2H transfer, the source is an AXI address and the destination
a PCle address.

Prior to any DMA transfer, the driver in the host has to be set up, which means
being loaded and configured accordingly to how was the XDMA IP configured.

AXI-MM transfer for H2C

Figure 4.9 offers a detailed flow chart of an H2C transfer. It starts at the application
level, issuing an H2C transfer (a write) to the driver. Then, the driver initiates the DMA
transfer to the FPGA. Once the H2C channel has performed all the necessary steps, it

sends an interrupt to the driver, which then notifies the user application that its transfer
has finished.

AXI-MM transfer for C2H

Figure 4.10 shows a well-explained flow chart of a C2H transfer. It starts at the application
level, issuing a C2H transfer (a read) to the driver. Then, the driver initiates the DMA
transfer to the FPGA. Once the C2H channel has performed all the necessary steps, it
sends an interrupt to the driver, which then notifies the user application that its transfer
has finished.

4.4.3 Port description
Next, the interfaces and signals used in the FPGA@SDYV design and relevant to this thesis

are going to be described. Figure 4.11 shows the XDMA graphical representation in a
BD from the FPGA@SDV Vivado project design.

Global signals

Table 4.2 contains the signals utilized in FPGAQSDV design.

Signal name H Type \ Description

sys_clk Input Internal system clock

sys_clk_gt Input PCle reference clock

sys_rst.n Input PCle reset

axi_aclk Output | PCIe output clock for AXI signals
axi_aresetn || Output | AXI reset signal syncronous to AXI clock

Table 4.2: Top-level signals name, type (input or output) and description. Source: [25].

39

Chapter 4. PCle and DMA 4.4. XDMA Xilinx IP

Gpplica’nnpmgram initiates H2C transfer, with transfer length, buffer location where data is shred)

| Driver creates descriptors based on transfer length. |

[}

Driver writes first descripior base address o Address 0x4080 and 0x4084.
Driver writes next adjacent descriptor count o 0x4088 if any.

!

Driver starts H2C transfer by writing ® H2C engines control register,
gddress Ox0004.

L]
DMA initiates Descriptor feich request for one or more descriptors
" (depending on adjacent descriptor count).

!

DMA receives one Descriptor or more descriptors (depending on
adjacent descriptor count).

DMA sends read request IS—Ikrl:lrsl}:il:nl.rc:eal:ll:iese:I:l-tas-at:l
on first avail

I_{

(Em“mmm“m"m’"“"‘) | DMA receives data from Host for that descriptor.

|
Y

—-—| Transmit data on (Card) AXHVM Master interface |

Yes
5 there more:
o transfer?

Mo

(Stq:ife‘l‘.l’l'ng data from I-hst)

Send internupt to Host.

i

Intemupt process.
Read ‘IR0 Block Channe Interrupt Request 0x2044 & see which channels sent interrupt.
Mask correspending channel interrupt writing o 0x 201 8.

Y

Driver Reads correspending “Status register’ 0x0044 which will also clear the status register.
Read channel ‘Completed descripter count’ 0x 0048 and compare with the number of
descriptor generated.

v

Write to channel "Control register 0x0004 o stop the DMA run. _ —
Write to Block channe! interrupt Enable Mask’ 0x2014 to enable intemupt for next ransfer.
Retum control to the application program with the transfer size. program.

XIEE0EIZ1R

Figure 4.9: XDMA DMA H2C Transfer flow chart, where green is the application program,
orange is the driver, and blue is the hardware. Source: [25].

40

Chapter 4. PCle and DMA 4.4. XDMA Xilinx IP

Application program initiates C2H transfer, with transfer length,
receive buffer location.

| Driver creates descriptors based on transfer length. |

L]

Driver writes first descriptor base address o Address 0x5080 and Ox3084.
Driver writes next adjacent descriptor count ® 0x5088 if any.

'

Driver starts C2H transfer by writing to C2H engines
control register, address 0x1004.

v

DM initigtes Descriptor fetch request for one or more
descriptors (depending on adjacent descriptor count).

DMA receives one Descriptor or more descriptors
(depending on adjacent descriptor count).

Mo ‘ A

DMA reads data from (Card) Source address for
agiven descriptor.

(Stop fetching descriptor

from host

v

Transmit data 1o PCle to (Host) Destination address. |

(Smpfel::h'ng dma:lrﬂom>

Card

Mo

Send interrupt to Host.

'

Interrupt process.
Read ‘IR0 Block Channel Interrupt Request 0x2044 o see which
channels sent intermupt
Mask corresponding channel interrupt writing = 02018 .

Driver Reads comesponding *Status register’ Ox 1044 which will also clear
status register.
Read channd ‘completed descriptor count’ 0x1048 and compare with
number of descriptor generated. Exit application
+ program.
[

Write to channel "Control register 0x1004 2 stop DMA run.

Write to ‘Block channel interrupt Enable Mask' 0x2014 o enable intemrupt Application pregram reads transfer data from
for next transfer. ™ assigned buffer and writes toa file.

Retum control to application program with transfer size. [PoT—

Figure 4.10: XDMA DMA C2H Transfer flow chart, where green is the application pro-
gram, orange is the driver, and blue is the hardware. Source: [25].

41

Chapter 4.

PCle and DMA

4.4. XDMA Xilinx IP

xdma_0

+ pcie_cfg_mgmt

M_AXI o fii—
pcie_mgt 4 "—
pcie_cfg_ext =4 "

— sys_clk user_Ink_up =
= sys_clk_gt axi_aclk p=—vo
—=Q sys_rst.n axi_aresetn ©—

== usr_irg_req[0:0] usr_irq_ack[0:0] =

msi_enable =

msi_vector_width[2:0] =

DMA/Bridge Subsystem for PCl Express

Figure 4.11: XDMA graphical representation in a BD from the Vivado GUI.

PCle interface

Table 4.3 exhibits the signals used in FPGA@QSDYV design. All those signals are grouped
in Figure 4.11 under the name interface pcie mgt.

Signal name H Type

\ Description

pci_exp_rxp | Input PClIe RX serial
pci_exp_rxn || Input PClIe RX serial
pci_exp_txp || Output | PCle TX serial
pci_exp_txn | Output | PCle TX serial

Table 4.3: PCle interface signals name, type (input or output) and description. Source:

[25].

4.4.4 Driver

Xilinx provides a device driver for the XDMA IP that allows the host computer to access
the FPGA and perform data transfers using the DMA engine. The driver runs at kernel
space. Figure 4.12 represents the driver usage model in a Linux OS, which is the OS of
the host CPU in Pickle nodes.

Linux Host

User
app

User space]

DMA
driver
Kernel space|

PCle

FPGA with
XDMA

Figure 4.12: Linux kernel device driver usage model.

42

Chapter 4. PCle and DMA 4.5. RDMA

4.5 RDMA

The Remote Direct Memory Addressing (RDMA) protocol provides a DMA application to
network protocols. It offers read and write services to user space applications and makes
it possible to transfer data without intermediate data copies [29]. That allows data to
be transferred between systems without involving the CPU, hence reducing the overhead
and latency associated with traditional network protocols.

On the one hand, in traditional network protocols, such as TCP/IP, data must be
copied multiple times between system memory and network buffers as it moves between
layers. This copying process, handled by the CPU, can be time-consuming and intro-
duce latency and performance overhead. On the other hand, in RDMA, the RDMA
controller allows applications to directly access hardware and zero-copy data movement,
which means that there is no CPU intervention.

RDMA is common in HPC, where fast and efficient data transfer is critical. For
example, in many data centers, the principal interconnection protocol between nodes is
InfiniBand!, which uses RDMA technology, instead of Ethernet.

Although this protocol is network-oriented, Xilinx has developed a soft IP and device
driver for FPGAs with PCle that take advantage of some RDMA concepts.

4.5.1 Concepts

The most important concepts necessary for this thesis are the following:

e Local Peer
The local entity, local end of the connection, in the description of a data transference
between two nodes [29].

e Remote Peer
The remote entity, opposite end of the connection, in the description of a data
transference between two nodes [29].

e Data sink
Peer receiving a data payload [29].

e Data source
Peer sending a data payload [29].

e RDMA Message
Data transfer technique to perform an RDMA Operation [29].

e RDMA Operation
The sequence of RDMA messages needed to transfer data from a Data Source to a
Data sink [29].

INVIDIA InfiniBand https://www.nvidia.com/en-us/networking/products/infiniband/

43

https://www.nvidia.com/en-us/networking/products/infiniband/

Chapter 4. PCle and DMA 4.5. RDMA

e RDMA Completion
Process of informing the user application that a certain RDMA operation has fin-
ished [29].

e RDMA Write
RDMA operation that transfers data from the Local Peer (Data Source) to the
Remote Peer (Data Sink) [29]. It is initiated by the Local Peer.

e RDMA Read
RDMA operation that transfers data from the Remote Peer (Data Source) to the
Local Peer (Data Sink) [29]. It is initiated by the Local Peer.

e Queue
Basic logical element used to manage the different RDMA messages and events.

RDMA protocol provides access to different RDMA Operations, but the relevant ones
are RDMA Write and RDMA Read.

4.5.2 Queues

A Queue Pair (QP) is a primary architectural element formed by two work queues: a Send
work queue (outbound) and a Receive work queue (inbound) [30]. In other words, these
two work queues establish a Queue Pair (QP). Each peer has its own QP, and data can
be transferred in both directions simultaneously, allowing for bidirectional data transfers.

A connection is based on the bond between two RDMA peers with QPs, a local QP
linked to a remote QP. A connection enables the exchange of RDMA operations.

The QP is identified by a QP number and it is independently configured, QPs are
independent of each other.

4.5.3 RDMA Write operation

RDMA protocol provides the user application access to the RDMA Write operation.

In an RDMA Write, the Local Peer acts as Data Source by transferring data to the
Remote Peer, the Data Sink.

Figure 4.13 illustrates the Message Sequence Chart (MSC) of an RDMA Write. The
RDMA Write operation is formed by an RDMA Write Message, sent by the Local Peer
to the Remote Peer. That message contains the data and where it has to be written in
the Data Sink, among other information.

44

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

MSC RDMA write

Local Peer Remote Peer

RDMA Write Message

Figure 4.13: Message sequence diagram of an RDMA Write.

4.5.4 RDMA Read operation

RDMA protocol provides the user application access to the RDMA Write operation.

In an RDMA Read, the Local Peer acts as Data Sink by requesting data from the
Remote Peer, which is the Data Source.

Figure 4.14 illustrates the MSC of an RDMA Read. The RDMA Read operation
is formed by an RDMA Read Request, sent by the Local Peer, and an RDMA Read
Response, sent by the Remote Peer.

The RDMA Read Request Message contains the Data Sink address from which the
Remote Peer has to read and the Data Source address where data has to be transferred,
among other information.

The RDMA Read Response Message holds the data from the Remote Peer, as part
of other information.

MSC RDMA read

Local Peer Remote Peer

Data Sink

RDMA Read Request

RDMA Read Response

Figure 4.14: Message sequence diagram of an RDMA read.

4.6 QDMA Xilinx IP

The Queue DMA (QDMA) Xilinx IP is a PCle DMA subsystem that implements the
RDMA protocol with the concept of multiple queues, which is different than the XDMA

45

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

IP as that IP uses channels [31]. The QDMA IP provides a high-bandwidth and low-
latency data transfer solution between the FPGA and other devices such as NICs, storage
devices, and other PCle-enabled devices.

QDMA is designed to move data between devices and memory by using a queue-based
approach, an idea derived from the RDMA concept queue set. The main mechanism to
perform transfers is through descriptors provided by the host OS. The data can be moved
in the H2C direction (write) and the C2H direction (read).

The features that QDMA offers and important for this thesis are:

e Up to 2048 queues can be used.

e Support for both AXI-MM and AXI-ST interfaces per queue.
Each queue can be configured individually by the driver to use AXI-MM or AXI-ST
interface. In other words, the QDMA IP supports both AXI interfaces at the same
time.

e Interrupts can be legacy, MSI, or MSI-X.
e Supports SR-IOV with up to 4 PFs and 252 VFs.

The possibility of assigning queues as resources to multiple PFs and VF's for a single
QDMA block, hence a single FPGA board, allows different multifunction and virtualized
application spaces.

The main limitation of the IP is that it supports a maximum of 256 queues on any

VF.

Figure 4.15 shows the IP diagram. The arrows represent the bus connections between
entities inside and outside the QDMA IP, which can be uni or bidirectional. Note that
this diagram is flipped compared to the XDMA one (Figure 4.6), the user logic block is
on the right and the physical PCle connections are on the left. The QDMA IP is formed
by the Ultrascale+ PCle Integrated block, the rectangle on the left, and the light gray
square, which has the QDMA engines. The focus will be on the blocks highlighted in
blue: descriptor engine, H2C' MM engine and H2C AXI-MM interface, C2H MM engine
and C2H AXI-MM interface, and IRQ module. On the left, the two buses correspond
to the physical PCle connection PCle RX and PCle TX, the top and bottom arrows,
respectively.

4.6.1 Architecture

At first sight, the diagram of the QDMA IP is more complex than the XDMA one. The
H2C engines manage all the H2C queues, as the C2H engines do with the C2H queues.

Descriptor Engine

The descriptor engine fetches the H2C and C2H descriptors and maintains per-queue
contexts with a series of pointers.

46

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

TM DSC STS _
Descriptor | o DSCCROT | |
Engine caimze |
“r R
Drcbyin |
H2CStream [«a
Engine o mranst M| -
o | reemm e
- - 5 al | -
| | rosre Engine ST -
S| 7| intedface C2H MM -
i Engine o] cHseme TM -
—_— PFCH Engine
UitraScale+ PCie - &Cacnl‘?e | cwsr |5 |=
Intengrated Biock CZH Stream |- i
ot o User Logic
Endpoint) CMFT Engine | g—{ cwrraast | 5 |
-+ 1RO Moduie Iﬁ

A

L |

L ST

&
y
8
[g}
]
L |

Control
Registers AKX Slavs

s
L] coscc e o :..
M

interface o=
Target Bridge

MDERFIND

Figure 4.15: QDMA diagram with highlighted interfaces and blocks. Source: [31]

47

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

It has separate buffers for each queue type and can send them directly to the H2C
and C2H engines, both Memory-Mapped (MM) and Stream ones.

H2C MM Engine

The H2C MM engine transfers data from host memory to FPGA memory via the H2C
AXI-MM interface [31].

When it receives a descriptor, it is responsible for generating PCle read requests to
host memory. Once data is received through the completion of a PCle read request, an
AXI write is generated on the H2C AXI-MM interface with the content from the PCle
read.

C2H MM Engine

The C2H MM engine transfers data from FPGA memory to host memory via the C2H
AXI-MM interface [31].

When it receives a descriptor, it is responsible for generating AXI read requests
to FPGA memory on the C2H AXI-MM interface. Once data is received through the
completion of an AXI read request, a PCle write to the host is generated with the data
from the previous AXI read.

Completion engine

The Completion (CMPT) engine is used to write to the completion queues. The comple-
tions are used by the driver to determine the number of bytes that were transferred [31].
It is mainly used along with the C2H Stream engine.

Interrupt Module

The Interrupt (IRQ) module aggregates interrupts from different sources, which are queue-

based, user and error interrupts [31]. The queue-based interrupts include interrupts from
H2C MM and C2H MM.

Depending if the SR-IOV is enabled or not, the available interrupt types changes.
With SR-IOV not enabled, each PF can have either legacy or MSI-X interrupts. Whereas
if SR-IOV is enabled, the only interruptions supported across all functions are MSI-X.

Queues design
The multi-queue PCle subsystem uses the RDMA model queue pair. Each queue set is

formed by H2C, C2H, and C2H Stream CMPT queues. The elements of each queue are
descriptors [31].

48

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

¥20520-061418

Qsetd
Qset2047

Driver Objects

= =
Ee L o T
i 3] I -]
- -

oo fsy=}

&l o

Figure 4.16: Queue ring architecture. Source: [31]

Those descriptors are written by the driver to H2C and C2H queues, and the engines
read from those queues. Valid descriptors are advertised by writing their index to queues.
Descriptors carry the host address, card address and length of DMA transfer.

Queues are rings located in host memory. A ring is a memory region dedicated to
having certain data. Figure 4.16 illustrates a queue ring architecture in the host memory.
For H2C and C2H queues, the producer is the driver and the consumer is the descriptor
engine.

4.6.2 Operations
Descriptor fetch

The H2C and C2H fetch operation consists in the following steps:

1. The driver prepares the descriptor along with the payload buffer information for the
H2C transaction or with reserved buffer space to receive the data for the C2H trans-
action. Then, it is placed in the corresponding queue with an associated producer
index (producer memory address).

2. The driver sends the producer index to the descriptor engine.
3. The descriptor engine issues a DMA read request to gather the descriptor.

4. Once the descriptor engine receives the read completion from the host, meaning
that all descriptors information has been delivered, the engine delivers them to the
corresponding H2C engine or C2H engine.

Figure 4.17 illustrates the fetch operation, where the numbers correspond to the
previous explanation.

49

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

msc QDMA read

QDMA TP
|Descr. engine

2. Pointer update
3. Descr. read request

4. Descr. provision

Figure 4.17: Message sequence diagram of a QDMA descriptor fetch.

Memory Mapped DMA

Memory-mapped DMA operations have source and destination memory-mapped spaces.
For the H2C transfer, the source address is from the PCle address space and the destina-
tion address belongs to the AXI-MM address space; and vice versa for the C2H transfer.
Both transfers have similar behavior and share the descriptor format [31].

The operation for either H2C or C2H transfers follows the same general procedure:

1. Fetch descriptors as detailed previously, in Section 4.6.2.
2. Generate a read request to the source interface to get the data.

e H2C: through PCle to reach the host memory.
e C2H: through C2H AXI-MM interface to reach the FPGA memory.

3. Write data in the destination interface.

e H2C: to H2C AXI-MM interface to reach the FPGA memory.
e C2H: to PCle to reach the host memory.

4. Receive the write completion from the destination to the source.

e H2C: an AXI bresp from H2C AXI-MM interface to H2C MM engine.
e C2H: a PCle write request accepted from the host to the C2H MM engine.

5. Once the completion criterion is met, send an interrupt.
Figures 4.18 and 4.19 ilustrate the previous process for H2C transfers and C2H trans-

fers, respectively. The last step, sending an interrupt, is not included in the diagram
because it is dependent on the type of interrupt used.

20

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

msc QDMA write
QDMA TP QDMA TP FPGA

|Descr. engine H2C engine Memory

Pointer update

Descr. read request

Descr. provision

Descr. delivery
Read request
PR
—] Data provision
” Write data
\)
AXI bresp
Write completion
P
—— — ——

Figure 4.18: Message sequence diagram of a QDMA write (H2C tranfer).

51

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

msc QDMA read
QDMA IP QDMA IP FPGA

|Descr. engine C2H engine Memory

Pointer update

Descr. read request

Descr. provision

Descr. delivery

Read request

Data provision

Write data

PCle write req. accepted

S A

Figure 4.19: Message sequence diagram of a QDMA read (C2h transfer).

4.6.3 Port description

The relevant ports and descriptions in QDMA IP are the same as for XDMA, which are
explained in Section 4.4.3.

4.6.4 Driver

As for the XDMA IP, Xilinx provides a software driver for the QDMA IP that allows the
host to access the FPGA and perform DMA transfers. It also runs in kernel space and
Figure 4.12 also applies to the QDMA driver.

The QDMA driver package is formed of 3 main components [31]:

e Device driver: Creates the descriptors and translates the user space functions into
low-level commands in order to interact with the QDMA device.

e Device control tools: Creates the QDMA queues, manages them, and other func-
tions.

52

Chapter 4. PCle and DMA 4.6. QDMA Xilinx IP

e DMA tools: User space applications to perform example DMA transfers.

Device driver

Xilinx provides 2 different drivers depending on the function type: PF driver for Physical
Function and VF driver for Virtual Function [32]. The user has to decide which driver to
use based on how the QDMA IP was configured.

PF and VF drivers can be inserted in different modes. The module (driver) parameter
mode specifies how the completions must be processed:

e Poll Mode
Driver polls on the status descriptor write-back for completions.

e Direct Interrupt Mode
A single interrupt vector is assigned to each queue. An interrupt is raised by the
hardware (FPGA) upon receiving the completions and the driver reads the comple-
tion status.

e Indirect Interrupt Mode
Each vector has an associated Interrupt Aggregation Ring. When a PCle MSI-
X interrupt is received by the driver, it reads the Interrupt Aggregation Ring to
determine which queue needs service.

e Legacy Interrupt Mode
Driver processes the status descriptor write-back using legacy interrupts.

Device control tool

The so-called dma-ctl tool is an application that provides a set of commands to configure
and manage QDMA queues in the system. It runs in user space.

It offers a collection of functions:

e Show the list of PCle functions bonded to the QDMA driver. Hence, the functions
that have a QDMA IP.

e Query queue control and configuration: list queues, add/configure new queues on a
device, and start, stop or delete them.

e Access to registers: read and write a register, and dumb the QDMA configuration
registers.

e Display queues’ parameters and entries from different rings.

23

Chapter 5

State-of-the-art

This chapter is dedicated to analyzing the state-of-the-art of various RISC-V implemen-
tations for FPGAs and evaluating the status of the FPGAQSDV design at the beginning
of this thesis.

5.1 RISC-V implementations in FPGA

As RISC-V is an open ISA it has allowed many companies to develop processors without
having to conceive an ISA from scratch or paying royalties (such as ARM ISA). For this
reason, there are different RISC-V implementations in the form of ASICs or FPGA’s
soft-cores. On the one hand, ASIC-based designs implement System-on-Chips (SoCs)
composed of the processor, a cache hierarchy and several peripherals such as Ethernet and
PCIe. On the other hand, soft-cores are soft IP cores developed to be used in FPGAsS,
so they are written in an HDL and are synthesizable. Moreover, more than one soft-core
can be instantiated in an FPGA, which allows the creation of multi-core systems.

Due to the scope of this thesis, which is centered on FPGAs, commercial RISC-V
soft-cores have been studied.

5.1.1 Rocket Chip

Rocket chip is an open-source SoC generator that creates RTL code. It allows instantiating
a general-purpose RISC-V CPU, which can be Rocket or BOOM [33]. It is developed by
the University of California, Berkeley.

It is written using Chisel, which is an HDL embedded in Scala. Chisel allows designers
to describe and generate hardware designs using a high-level programming language.

BOOM

The Berkeley Out-of-Order Machine (BOOM) is an open-source soft-core implementation
of the RISC-V ISA [34]. It is based on the RISC-V RV64GC variant, also known as

o4

Chapter 5. State-of-the-art 5.1. RISC-V implementations in FPGA

RV64IMAFDC: RISC-V 64-bit Integer, Multiply and divide, Atomic, Floating point
single and Double precision and Compressed instruction set support. The BOOM soft-
core was developed at the University of California, Berkeley.

The implementation of BOOM is written using Chisel.

BOOM is designed to be synthesizable, meaning that it can be transformed into an
HDL representation and synthesized into an actual hardware design. It is also parameter-
izable, enabling customization of various design aspects such as cache size, issue width,
and other performance-related parameters.

BOOM does not provide built-in support for peripherals. It focuses primarily on the
CPU core itself and its associated functionality. Peripheral support, such as input/output
interfaces, external memory controllers, and other hardware components, would need to
be added separately to create a complete system using BOOM.

The core is capable of successfully booting the Linux OS. This implies that it satisfies
the requirements and supports the necessary functionalities to initiate and run the Linux
kernel, enabling the execution of Linux-based applications and software on the BOOM
soft-core.

Rocket

Rocket is an in-order soft-core that implements RV32G and RV64G and it is developed
by Berkeley. It is also written in Chisel.

Rocket is synthesizable, as well as BOOM, and is compatible with FPGA designs
through the Rocket chip integrator. It is capable of booting Linux.

FPGA integration

Rocket chip offers support to some FPGA boards. The Xilinx boards supported are: Arty
FPGA Evaluation Kit, VC707 FPGA Evaluation Kit and VCU118 Evaluation Kit. Their
FPGA shell includes JTAG, UART and XDMA..

5.1.2 Nios V processor

The Nios V processor is a RISC-V soft processor core developed by Intel. It is specifically
designed to be used with Intel FPGA devices.

The Nios V processor has two distinct variants available. The Nios V/m variant is
designed as a microcontroller and implements RV32IA. The 321 extension stands for 32-bit
Integer. The Nios V /g variant is a general-purpose processor that implements RV32IMA
extensions.

To integrate the Nios V processor into an FPGA design, it can be instantiated using
Intel Quartus. Intel Quartus is a software development tool provided by Intel that enables
designers to create, configure, and program FPGA designs, like Vivado.

95

Chapter 5. State-of-the-art 5.2. Initial state of SDV design

The Nios V processor core itself does not include any built-in peripheral interfaces
or connection logic to external devices. It focuses primarily on the CPU functionality. To
interact with peripherals and external devices, additional logic and interfaces need to be
added separately to the FPGA design, connecting them to the Nios V core.

The Nios V processor does not have native support for booting the Linux operating
system.

5.1.3 PULP platform

Parallel Ultra-Low-Power (PULP) is an open-source platform developed by ETH Zurich
and the University of Bologna. Its architecture includes a RISC-V core as the main core
and support to different 10 peripherals. The two possible RISC-V cores are RISGCY and
zero-riscy [35].

RI5CY is an in-order core that implements RV32IMCF RISC-V extensions and it has
been designed to target ultra-low-power constraints. Whereas the other core, zero-riscy, is
also an in-order core, but it implements RV32IMVE (E stands for the reduced number of
registers extension) and it targets ultra-low-power and ultra-low-area constraints. RI5CY
is developed in System Verilog, an HDL, and it does not boot Linux.

As it was mentioned before, the PULP platform offers support to IO peripherals,
which means that it does not instantiate those IPs, but it provides interfaces to those
peripherals so the users can connect FPGA-dependant IPs.

5.1.4 Ariane

CVAG, formerly known as Ariane, is an in-order RISC-V core that implements RV64IAMC
and it is implemented by OpenHW Group [30]. It is written in System Verilog.

Ariane can boot Linux as it implements three privilege levels to fully support a
Unix-like OS.

It is parametrized and offers a different separated FPGA emulation platform, al-
though it only provides support for the Xilinx Genesys 2 board. That FPGA emulation
platform is called CVA6 APU and it offers support to differnet interfaces such as UART
and Ethernet.

5.2 Initial state of SDV design

In the SDV design for FPGAs, also known as FPGAQSDV, the PCle subsystem used
is XDMA. The FPGAs supported initially with the FPGA@SDV design are shown in
Table 5.1.

o6

Chapter 5. State-of-the-art 5.3. Comparison

FPGA model \ PCle Subsystem

Xilinx VCU128 | XDMA
Xilinx Ub5C XDMA

Table 5.1: FPGA supported with the EPAC design.

5.3 Comparison

Rocket chip is the only open-source RISC-V implementation studied that provides PCle
support, specifically the XDMA IP. The developers do not provide information about
the PCle performance and synthesizing one of their cores and FPGA shells would not
be feasible because non of their supported FPGA boards are available in our systems
and only adapting the shell to the Xilinx VCU128 would be by itself a three-month task.
Therefore, comparing FPGA@SDV againts other RISC-V soft-cores is a complex task
that cannot be performed due to the thesis time limit.

o7

Chapter 6

Replacement of XDMA with QDMA

After studying and understanding all the concepts from the previous chapters, the tech-
nical work could be started.

This chapter is focused on the development performed in order to achieve a functional
SDV design in the VCU128 using the QDMA PCle subsystem, instead of the XDMA one.
The final goal is to be able to boot the Linux image with QDMA keeping the same
functionalities and same tools as with XDMA, and to evaluate both IPs.

6.1 Example design

Xilinx provides example designs for some of their IPs. An example design is a Vivado
project with all the necessary sources to be able to test the IP’s functionality.

An example design for the QDMA IP can be generated, as the QDMA documentation
stated [31]. First of all, a QDMA IP was instantiated in a new Vivado project, in a BD.
Then, that [P was configured with the same basic PCle parameters as in XDMA. That is
because the documentation states that the example design can be generated and adapted
to the parameters set in the IP [31].

After that, the configured IP example design was produced and studied. The example
design is written in Verilog and SystemVerilog, two HDL languages. It contains a wrapper

for the QDMA IP and a QDMA app. The QDMA app is an RTL code that acts as the
user application.

The interesting part and motivation to investigate the example design was to observe
the simulation behavior of the IP. It would be useful being able to compare the expecte
QDMA behaviour in simulation agains the QDMA in the SDV design, if it does not work
as expected.

Unfortunately, running the simulation was not possible. When launching it in Vivado,
it reported the error shown in Listing 6.1. The first error redirected to a log file, which
was consulted and the error in Listing 6.2 was reported. The error reports that signal
s_axil_araddr is not declared before using it as input for another module. That error had
an easy fix, but before performing it, I realized that there were more signals undeclared,

o8

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

and, more importantly, that those input signals were not being generated anywhere in
the code. No module had those signals as output, and as I was not the designer of that
RTL code, it was not straightforward knowing where they had to be generated.

ERROR: [USF-XSim-62] ’compile’ step failed with error(s). Please check
the Tcl console output or ’/home/aquerol/tfm/qdma_example/qdma_O_ex/
gdma_O_ex.sim/sim_1/behav/xsim/xvlog.log’ file for more information.

ERROR: [Vivado 12-4473] Detected error while running simulation. Please
correct the issue and retry this operation.

ERROR: [Common 17-39] ’launch_simulation’ failed due to earlier errors.

Listing 6.1: Errors reported by Vivado lauching the example design simulation.

ERROR: [VRFC 10-2989] ’s_axil_araddr’ is not declared [/home/aquerol/tfm
/qdma_example/qdma_O_ex/imports/qdma_app.sv:456]

ERROR: [VRFC 10-8530] module ’qdma_app’ is ignored due to previous
errors [/home/aquerol/tfm/qdma_example/qdma_O_ex/imports/qdma_app.sv
:58]

Listing 6.2: Errors reported in the log file when running the example desing simulation.

After spending some time on it, it became clear that keep working with a non-
functional example design was not worth the time. Hence, it was decided to perform
the replacement of IPs in the SDV design directly.

6.2 Replacement in SDV design

After deciding to continue directly with the SDV design, the following steps were foreseen:

e In the hardware side:

1. Replace the XDMA IP in the BD with the QDMA IP.
2. Adapt the design constraints.
3. Generate the QDMA bitstream.

e In the software side:

Compile the QDMA driver and tools provided by Xilinx.
Load the driver with the proper parameters.

Configure a queue.

Execute the data word test (explained in Section 6.2.8).

Adapt the current EPAC tools and check that the EPAC behavior remains
unchanged.

A

e Run the performance tests and extract different metrics.

Sections below do not strictly follow the previous steps, since technical difficulties
arose during the developement of those.

29

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

6.2.1 Change of IPs
IP settings

The first step was changing the XDMA IP with the QDMA IP in the BD. To do so, a
QDMA IP was instantiated in the BD. Then, each QDMA IP tab was configured, keeping
the common settings with the same values and adjusting the remaining ones as close as
possible to the previous XDMA configuration or in the most optimal manner possible for
the project.

The following figures contain the XDMA configuration in the firsts subfigures and
the new QDMA configuration in the last subfigure, because some XDMA configuration
tabs are merged into a unique QDMA IP. Each figure groupes similar settings in both
IPs. The relevant settings for this thesis will be explained below.

Figure 6.1 shows the configuration from the Basic tab, which has almost the same
parameters in both IPs. The QDMA configuration, Figure 6.1c, has the additional setting
Number of Queues that was set with the minimum number of queues available (512),
because only one queue was necessary for the SDV tools. The other QDMA parameters
were defined with the same XDMA values. The PCle Block Location affects the placement
of the soft IP in the FPGA, the Lane width is set to 8x (8 lanes), and the Maximum Link
speed sets the PCle generation, hence the 5.0 GT/s refers to PCle Gen 2.

The tabs shown in Figure 6.2 contain the PCle identification, which has the default
value set, so the driver does not have to be changed. Figure 6.2b shows additional settings
related to SR-IOV and the number of PFs. SR-IOV has not been activated as Pickle nodes
do not have virtualization, therefore the number of PFs required is only 1.

The next tab manages the output AXI buses, in Figure 6.3. The only AXI interface
enabled is the DMA one. Figure 6.3b shows that the QDMA IP offers more configurable
parameters for this interface, which have been set with the default values.

The MISC tab in Figure 6.4 has the interrupt configuration. The XDMA IP of-
fers more settings for the legacy and MSI interrupts than for the MSI-X ones, whereas
the QDMA settings are the other way around: more configuration options for MSI-X
interrupts than the other ones. Legacy interrupts are enabled in the QDMA IP.

Figure 6.5 contains the DMA settings, which are different for each IP. The first two
options from the XDMA IP, Figure 6.5a, indicate that 4 H2C and C2H channels are being
used. This option would correspond in QDMA to the Number of Queues set in the Basic
tab. In addition, the XDMA descriptor bypass is set per channel, whereas the QDMA
descriptor bypass is set globally. In both cases, it is deactivated, so the IP is the one that
manages the descriptors.

The remaining XDMA tabs (Figures 6.6a to 6.6¢) are all grouped in the same QDMA
tab (Figure 6.6d).

60

Chapter 6. Replacement of XDMA with QDMA

6.2. Replacement in SDV design

Re-customize IP

DMA/Bridge Subsystem for PCI Express (4.1)
e Documentation IP Location

[0 show disabled ports Component Name xdma_0

M_AXI [0 Board Basic PCle ID PCle : BARs PCle : MISC
peie_mat +| Associate IP interface with board interface
||+ pcie_cfg_mgmt prie_cfg_ext + |||
IP Interface
sys_clk user_Ink_up
eys clk gt 2 aclk RST:sysRustin

sys_rst_n axi_aresetn
usr_irq_real0:0] usr_ira_acki0:0]
msi_enable

msi_vector_width[2:0]

peie_7x_mgt

Clear Board Parameters

PCle : DMA Debug Options Shared Logic = GT Settings

Board Interface
pcie perstn
pci express x8

(a) XDMA

Re-customize IP

DMA/Bridge Subsystem for PCI Express (4.1)
@ Documentation IP Location

[Show disabled ports Component Name |xdma_0

Board Basic PCleID PCle : BARs PCle : MISC
Functional Mode | DMA w
Mode Advanced v
Device / Port Type | PCl Express Endpoint device

PCle Block Location | PCIE4C X1Y0

PCle Interface

M_AX [
pcie_mgt + Lane Width X8
||+ prie_cfig_mgmt pcie_cfg_ext +
Maximum Link Speed
sys_clk user_Ink_up
sys_clk_gt axi_aclk 2.5 GTfs 0GTs ()806T/s ()16.0GTs
sys_rst_n axi_aresetn
usr_irq_req[0:0] usr_irq_ack[0:0] Reference Clock Frequency (MHz) | 100 MHz v
msi_enable
mmsi_vector width[2:0] Reset Source User Reset w
GT DRP Clock Selection Internal ~

PCle : DMA Debug Options Shared Logic = GT Settings

GT Selection

GT Quad GTY Quad 227

AXI Interface

AXI Address Width 64

AXI Data Width

(®) 128 bit

256 bit
AXI Clack Frequency 250 v
DMA Interface option
(®) x| Memory Mapped () AX| Stream
[) AxI-Lite Slave Interface
Data Protection

(®) None

Check Parity () Propagate Parity

(b) XDMA

Figure 6.1: Basic tab

61

Chapter 6. Replacement of XDMA with QDMA

6.2. Replacement in SDV design

Queue DMA Subsystem for PCI Express (4.0)

@ Documentation IP Location

[show disabled ports Component Name gdma_0

Basic

DMA Interface options
DMA Interface Selection AXI MM

Number of Queues (upto 2048) 512

Re-customize IP

Capabilities PCle: BARs PCle: MISC PCle:
Functional Mode | QDMA -
Mode Advanced v
PCle Port type and Block location
Device / Port Type | PCI Express Endpoint device
PCle Block Location | PCIEAC X1Y0
PCle Interface
. Lane Width X8 ~
“ + wsr_irg PEGUEE ” Maximum Link Speed
[+ desrdiin peie_cfg ext o]|
k| tmdse s |l - . - -
Bl sts_out + ” ()25GT/s ®50GT/s ()8.0GT/s (J)16.0GT/s
sys_clk gt 5
Ny user_lnk_up
g sysrstn
o soft reset n el Reference Clock Frequency (MHz) 100 MHz ~
- - axi_aresstn O
phy_ready Reset Source PCle User Reset +
GT DRP Clock Selection Internal ~
Free Running Clock Frequency (MHz) | 100 MHz ~

DMA Debug and Additional Options

GT Selection

GT Quad GTY Quad 227
AXl Interface
AXI Data Width

(®) 128 bit () 256 bit

AXI Clock Frequency | 250 -

Bridge Interface options
() Enable Bridge Slave Mode
() vDM Enable
[0 axi-Lite Slave Interface

[axi-Lite CSR Slave Interface

(c) QDMA

Figure 6.1: Basic tab

Block Design connection

The next step was connecting the input and output signals from XDMA IP to the QDMA
IP, as Figure 6.7 illustrates. Moreover, the QDMA TP had to be connected to the board

PCle hard IP.

pcie_perstn D

gdma_0

MAXI o |
pcie_mgt - "—

usr_ir
| + 4 pcie_cfg_ext 4 "_
| + dsc_crdt_in
= tm_dsc_sts "
sys_C
sys_clk gt gsts_out 4 "
9 sysirstin user_Ink_up

util_ds_buf

pcie_refclk D—” -+ CLK_IN_D

IBUF_OUT[0:0]
IBUF_DS_ODIV2[0:0]

Utility Buffer

l

k_

axi_aclk
©Q soft_reset_n

axi_aresetn

phy_ready

Queue DMA Subsystem for PCI Express

Figure 6.7: BD with the pins and connections for the QDMA TP.

62

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

= Re-customize IP + X
DMA/Bridge Subsystem for PCI Express (4.1) /
@ Documentation IP Location
() show disabled ports Component Name |xdma_0
Board Basic PCle ID PCle : BARs PCle : MISC PCle : DMA Debug Options Shared Logic = GT Settings
-
ID Initial values
Vendor ID
Device ID 9028
Revision 1D 00
MAN Subsystem Vendor ID | 10EE
pcie_mgt 4
|+ peie_cfg_mgrnt pcie_cfg_ext + Subsystem ID 0007
sys_clk user_Ink_up —
|_) Enable PCle-ID Interface
sys_clk_gt axi_aclk
sys_ret n @ aresetn Class Code Lookup Assistant
usr_irq_req[0:0] usr_irq_ack[0:0] -
msi_enable [J Use Class Code Lockup Assistant
msi_vector_width[2:0] Base Class Menu simple communication controllers v
Base Class Value 07 Range: 00..FF
Sub Class Interface Menu 16450 compatible serial controller v
Sub Class value 00 Range: 00..FF
Interface Value 01 Range: 00..FF
Class Code 070001 Range: 000000, FFFFFF
< >

(a) XDMA

> Re-customize IP

Queue DMA subsystem for PCI Express (4.0) [
@ Documentation IP Location

[show disabled ports Component Name |qdma_0

Basic Capabilities PCle: BARs PCle: MISC PCle: DMA Debug and Additional Options

SRIOV Capabilities
() srioV capability
[7) Enable FLR

() Enable Mailbox among functions

Physical Functions

Total Physical Functions | 1 -

PF - ID Initial Values
PF2# Vendor ID Device ID Revision ID Subsystem Vendor 1D Subsystem ID
FFO 10EE 9028 00 10EE 0007

Class Code
PE# Use Classcode Base Class Base Class Subclass Subclass Interface Class
Lookup Assistant Menu Walue Interface Menu Walue Walue Code

FFO O Memory controller ~ 05 Other memory controlle ~ |80 00 058000

(b) QDMA

Figure 6.2: PCle ID and Capabilities tab

63

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

~ Re-customize IP + X
DMA/Bridge Subsystem for PCI Express (4.1) [}
@ Documentation IP Location

() show disabled ports Component Name |xdma_0

Board Basic PCle ID PCle : BARs PCle : MISC PCle : DMA Debug Options Shared Logic = GT Settings

-
() PCle to AXI Lite Master Interface
Size 1 Scale | Megabytes
MLA value
pcie_mgt 4
PCle to AX| Translation |0x00000000
||+ prie_cfg_mgmt pcie_cfg_ext +
sys_clk user_Ink_up
sys_clk_gt axi_aclk
sys_rst_n axi_aresetn
usr_irg_req[0:0] usr_irg_ack[0:0] ([O) 64bit Enable
msi_enable
msi_vector_width[2:0]
[7) PCle to DMA Bypass Interface
Size 1 Scale Megabytes
Walue FFFO0000
PCle to AXI Translation 0x0000000000000000
-

(a) XDMA

& Re-customize IP + X
Queue DMA Subsystem for PCI Express (4.0) /
e Documentation IP Location

(0 show disabled ports Component Name qdma_0

Basic Capabilities | PCle: BARs PCle: MISC PCle : DMA Debug and Additional Options

Base Address Registers (BARs) serve two purposes. Initially, they serve as a mechanism for the device to request blocks of address space inthe eystem memory
map. After the BIOS or OS determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform address decoding

PFO ®
M_AXI [Bar Type 64 bit Prefetchable Size Scale Walue (Hex) PCle to AX| Translation
DMA ~ 0 256 ~ | kilobytes ~ FFFCO000 0x0000000000000000
4 dsc_crdt in peieclgext 4+
mmel trn_dsc sts + O b - = 00000000 0x0000000000000000
sys_ck_gt aetaout + .
o sya et 0 user_ink_up O - - - 00000000 0x0000000000000000
- axi_aclk
q softresetn axi_aresetn O ~ ~ = 00000000 0x0000000000000000
phy_ready —
O - - - 00000000 0x0000000000000000
O - - - 00000000 0x0000000000000000
O < - - 00000000 0x0000000000000000

(b) QDMA

Figure 6.3: Bars tab

64

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

Re-customize IP

DMA/Bridge Subsystem for PCI Express (4.1)

@ Documentation IP Location
[show disabled ports Component Name |xdma_0
Board Basic PCleID PCle : BARs PCle: MISC PCle: DMA Debug Options Shared Logic = GT Settings
~
User Interrupts
Number of User Interrupts Request (1-16) | 1 -
Legacy Interrupt Settings
Legacy Interrupt Settings | INTA ~
MSI Capabilities
[Enable M| Capability Structure
M_AX [
peie_mgt + " Multiple Message Capability 1 vecter v
||+ prie_cfg_mgmt peie_cfg_ext + |||
sys_clk user_Ink_up MSI-X Capabilities
sys_clk_gt axi_achk [J Enable MSIX Capability Structure
sys_rst_n axi_aresetn
usr_irq_req[0:0] usr_irg_ack[0:0] Miscellaneous
s el [Finite Completion Credit:
msi_vector_width[2:0] ~J Finite fompletion Eredits
[Extended Tag Field
[configuration Extended Interface
[Add the PCle XVCSEC to the Example Design
[Configuration Management Interface
Link Status Register
Selects whether the device reference clock is provided by the connector
{Synchronoug) or generated via an enboard PLL{Asynchronous)
[¥) Enable slot Clock Configuration
v

(a) XDMA

Re-customize IP.

Queue DMA Subsystem for PCI Express (4.0)

@ Documentation IP Location
(0 Show disabled ports Component Name qdma_0
Basic Capabilities PCle: BARs PCle: MISC PCle: DMA Debug and Additional Options
MSI-X Capabilities
PFO
[C) Enable PFO MSI-X Capability Structure
MSI-X Table Settings
M_AXI 4 fi
i Table size |000 000..01F
|l|+ usr_ira peie_mat +|
- peie_cfg_ext =+ |||
|ll+ dse_crdt_in
tm_dsc_sts + |||
sys_clk stsout + || Miscellaneous
sys_clk_gt aete o
SRR user_lnk_up) Extended Tag Field
. ad_aclk
ft t - — —
Sottreset.n ai_aresetn ¥ Configuration Extended Interface) Legacy Configiuration Extended Interface
phy_ready

[Add the PCle XVC/SEC to the Example Design

[Configuration Management Interface

Link Status Register

Selects whether the device reference clock is provided by the connector
{Synchronous} or generated via an onboard PLL{Asynchronous)

[¥) Enable slot Clock Configuration

(b) QDMA

Figure 6.4: MISC tab

65

Chapter 6. Replacement of XDMA with QDMA

6.2. Replacement in SDV design

DMA/Bridge Subsystem for PCI Express (4.1)
IP Location

@ Documentation

[) Show disabled ports

M_AX [
peie_mgt 4
|+ peie_cfg_mgrnt pcie_cfg_ext +
sys_clk user_Ink_up
sys_clk_gt axi_aclk
sys_rst_n axi_aresetn

usr_irg_req[0:0] usr_irg_ack[0:0]
msi_enable

msi_vector_width[2:0]

Re-customize IP

Component Name xdma_0

Board Basic PCleID PCle : BARs PCle : MISC
Number of DMA Read Channel (H2C)
Number of DMA Write Channel (C2H) 4
nNumber of Request IDs for Read channel (2,4,8,16,32,64) 32

Number of Request IDs for Write channel (2,4,8,16,32) 16

Descriptor Bypass for Read (H2C) 0000
Descriptor Bypass for Write (C2H) 0000
AX1 1D Width 4

() DMA Status Ports

PCle: DMA

Debug Options Shared Logic

GT Settings

~
12 - 64
[2-32]

-

-

-

(a) XDMA

Queue DMA subsystem for PCI Express (4.0)
@ Documentation - IP Location

[show disabled ports

Basic

Capabil

Re-customize IP

Component Name |qdma_0

es PCle:BARs PCle: MISC PCle: DMA Debug and Ad

on

Descriptor Bypass

Descriptor Bypass for Read/Write (H2C/C2H)

user_Ink_up
i_aclk

@di_aresem 9
phy_ready

@ None

escriptor bypass and intemal

C2H stream Completion
Color bits
Color bit position Reg0 |1
Coler bit position Regl 0
Color bit position Reg2 0
Coler bit position Reg3 0

Color bit position Regd 0

Color bit position Reg5 | 0
Color bit position Regé 0
Performance options
prefetch cache depth 16 -
CMPT Coalesce Max buffer | 16 v

Data Protection

None ata Protection

al Options

Error bits

N

Error bit position Reg0

o

Error bit position Regl

o

Error bit position Reg2

o

Error bit position Reg3

o

Error bit position Reg4

o

Error bit position RegS

o

Error bit position Regé

(b) QDMA

Figure 6.5: DMA tab

66

Chapter 6. Replacement of XDMA with QDMA

6.2. Replacement in SDV design

DMA/Bridge Subsystem for PCI Express (4.1)
IP Location

@ Documentation

[0 show disabled ports

M_AX 4o
pcie_mgt 4
|+ pie_cfg_mgrnt peie_cfg_ext +
sys_clk user_Ink_up
sys_clk_gt axi_aclk
sys_rst_n axi_aresetn

usr_irg_req[0:0] usr_irg_ack[0:0]

mmsi_enable

msi_vector_width[2:0]

Re-customize IP

Component Name xdma_o0

Board Basic PCle D PCle : BARS PCle: MISC PCle: DMA Debug Options Shared Logic = GT Settings
174G Debugger.

[LTS5M state Debug logic

[In System IBERT.

[Add Mark Debug Utility

[JJ PCle Debug Ports

[JJ) Enable Debug AXI4 Stream Interfaces

(a) XDMA debug options

DMA/Bridge Subsystem for PCI Express (4.1)
IP Location

@ Documentation

[) Show disabled ports

M_AX [
peie_mgt 4
|+ pcie_cig_mgmt peie_cfg_ext 4
sys_clk user_Ink_up
sys_clk_gt axi_aclk
sys_rst_n axi_aresetn

usr_irg_req[0:0] usr_irg_ack[0:0]
msi_enable

msi_vector_width[2:0]

Re-customize IP

Component Name xdma_0

Board Basic PCleID PCle : BARs PCle: MISC PCle: DMA Debug Options Shared Logic GT Settings

GT Wizard Option
Select whether GT Wizard is included in the core itself or in the example design.
®) Include GT Wizard in core

() Include GT Wizard in example design

GT COMMON Option
Select whether GT COMMON is included in the core/GT Wizard itself or in the example design.
(0 Include GT COMMON in example design
() Include GT COMMON inside GT Wizard

(® No sharing when inside GT Wizard and PCle

(b) XDMA shared logic

DMA/Bridge Subsystem for PCI Express (4.1)
IP Location

@ Documentation

[[) show disabled ports

WA [

peie_mgt 4

|+ pcie_cig_mgmt peie_cfg_ext 4
sys_clk user_Ink_up
sys_clk_gt axi_aclk
sys_rst_n axi_aresetn
usr_irg_req[0:0] usr_irg_ack[0:0]
msi_enable

msi_vector_width[2:0]

Re-customize IP

Component Name |xdma_0

PCle: MISC PCle: DMA Debug Options Shared Logic = GT Settings

False

PLL selection QPLL1 A4

Board Basic PCle ID PCle : BARs

Enable Auto RxEq

Form factor driven Insertion loss adjustment | Add-in Card ~
Link Partner TX Preset 4 ~

Disble GT Channel LOC Constraint false ~

(c) XDMA GT settings

Figure 6.6: Debug and additional options tabs

67

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

& Re-customize IP + X
Queue DMA Subsystem for PCI Express (4.0) ’
e Documentation IP Location

(0 show disabled ports Component Name qdma_0

Basic Capabilities PCle: BARs PCle: MISC PCle: DMA Debug and Additional Options
Debug Options
[JEnable JTAG Debugger.
() Enable In system IBERT.

() add Mark Debug Utility

() Enable PCle Link Debug Ports

M_px
Ill+ ‘ pcie_mgt =+ || [C) Enable Debug Ax14 Stream Interfaces
usr_irg -
- cie_cfg_ext
I+ dsc_crdtin peie_cfg_ext 4+
a5 clk tm_dsc sts +||| SharedLogic Options
N gsts_out ||| . i .
sys_clk_gt GT Wizard Options GT COMMON Options
g user_Ink_up
yft_ = axi_aclk Select whether GT Wizard is included in the core itself or in the example design. Select whether GT COMMON is included in the ¢
soft_reset_n . -
axi_aresetn ®) Include GT Wizard in core D) Include GT COMMON in example design
phy_ready
Include GT Wizard in example design Include GT COMMON inside GT Wizard

®) No sharing when inside GT Wizard && PCle

GT Settings

PLL Selection QPLLL -
Form factor driven Insertion loss adjustment | Add-in Card
Link Partner TX Preset 4 -

Disable GT Channel LOC Constraint false v
v

< >

[o] [Ccamee |

(d) QDMA

Figure 6.6: Debug and additional options tabs

6.2.2 Constraints

The next step was adapting the time and pinout constraints.

The time XDC file only needed a change in the path to the AXI signal. Listing 6.3
shows the modified line.

set pcie_clk [get_clocks -of_objects [get_pins design_1_i/qdma_0/
axi_aclk]]

Listing 6.3: Modified line in the time XDC file.

Regarding the pinout constraints, a curious fact was observed: there were no pins
assigned for the PCle signals. Hence, it was decided to proceed with the bitstream
generation without defining them, as for XDMA they were not required and the bitstream
worked correctly.

68

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

6.2.3 Bitstream generation failure

The final step of the hardware development was generating the bitstream running the
synthesis and implementation in Vivado.

This part is crucial since it is when the majority of problems can arise, as there
are many things that can go wrong. It is important to keep in mind that the vanilla
FPGA@SDV design already occupies a big percentage of LUTSs, which results in limiting
the Vivado routing possibilities to meet the time constraints. The main concerns were
i) that the new IP would use more LUTs than we can afford, ending up in not closing
timing; and 7i) the uncertainty with the PCle pins, to check if it would keep working
without defining them.

Vivado offers the possibility to check how many FPGA resources are estimated to
be used post-synthesis. It is useful as a rule of thumb because if the number of LUTs
required is close to or above 90%, it is very likely that Vivado will struggle during the
routing phase in the implementation and with a high chance of not meeting the time.

Therefore, the resource utilization after synthesis was checked and it was below 80%,
meaning that Vivado would be very likely to close timing. After running the implemen-
tation, the WNS was positive (> 0). However, when generating the bitstream file, the
errors shown in Listing 6.4 arose.

[DRC NSTD-1] Unspecified I/0 Standard: 31 out of 162 logical ports use I
/0 standard (IOSTANDARD) value °’DEFAULT’, instead of a user assigned
specific value. This may cause I/0 contention or incompatibility with

the board power or connectivity affecting performance, signal
integrity or in extreme cases cause damage to the device or the
components to which it is connected. To correct this violation,
specify all I/0 standards. This design will fail to generate a
bitstream unless all logical ports have a user specified I/0 standard
value defined. To allow bitstream creation with unspecified I/O
standard values (not recommended), use this command: set_property
SEVERITY {Warning} [get_drc_checks NSTD-1]. NOTE: When using the
Vivado Runs infrastructure (e.g. launch_runs Tcl command), add this
command to a .tcl file and add that file as a pre-hook for
write_bitstream step for the implementation run. Problem ports:
pci_express_x8_txp[7], pci_express_x8_txp[6], pci_express_x8_txpl[5],
pci_express_x8_txp[4], pci_express_x8_txp[3], pci_express_x8_txpl[2],
pci_express_x8_txp[1], pci_express_x8_txp[0], pci_express_x8_txnl[7],
pci_express_x8_txn[6], pci_express_x8_txn[5], pci_express_x8_txn[4],
pci_express_x8_txn[3], pci_express_x8_txn[2], pci_express_x8_txn[1],
pci_express_x8_txn[0], pci_express_x8_rxpl[7], pci_express_x8_rxpl[6],
pci_express_x8_rxp[5b], pci_express_x8_rxpl[4], pci_express_x8_rxpl[3],
pci_express_x8_rxp[2], pci_express_x8_rxp[l], pci_express_x8_rxpl[0],
pci_express_x8_rxn[7], pci_express_x8_rxn[6], pci_express_x8_rxnl[5],
pci_express_x8_rxn[4], pci_express_x8_rxn[3], pci_express_x8_rxn[2],
pci_express_x8_rxn[1], pci_express_x8_rxn[0], pcie_perstn,
pcie_refclk_clk_p, and pcie_refclk_clk_n.

[DRC UCIO-1] Unconstrained Logical Port: 31 out of 162 logical ports

have no user assigned specific location constraint (LOC). This may
cause I/0 contention or incompatibility with the board power or

69

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

connectivity affecting performance, signal integrity or in extreme
cases cause damage to the device or the components to which it is
connected. To correct this violation, specify all pin locations. This

design will fail to generate a bitstream unless all logical ports
have a user specified site LOC constraint defined. To allow
bitstream creation with unspecified pin locations (not recommended),
use this command: set_property SEVERITY {Warningl} [get_drc_checks
UCIO-1]. NOTE: When using the Vivado Runs infrastructure (e.g.
launch_runs Tcl command), add this command to a .tcl file and add
that file as a pre-hook for write_bitstream step for the
implementation run. Problem ports: pci_express_x8_txpl[7],
pci_express_x8_txp[6], pci_express_x8_txp[5], pci_express_x8_txpl[4],
pci_express_x8_txp[3], pci_express_x8_txp[2], pci_express_x8_txpl[1l],
pci_express_x8_txp[0], pci_express_x8_txn[7], pci_express_x8_txnl[6],
pci_express_x8_txn[5], pci_express_x8_txn[4], pci_express_x8_txn[3],
pci_express_x8_txn[2], pci_express_x8_txn[1l], pci_express_x8_txnl[0],
pci_express_x8_rxp[7], pci_express_x8_rxp[6], pci_express_x8_rxpl[5],
pci_express_x8_rxp[4], pci_express_x8_rxp[3], pci_express_x8_rxpl[2],
pci_express_x8_rxp[1], pci_express_x8_rxp[0], pci_express_x8_rxnl[7],
pci_express_x8_rxn[6], pci_express_x8_rxn[5], pci_express_x8_rxnl[4],
pci_express_x8_rxn[3], pci_express_x8_rxn[2], pci_express_x8_rxnl[1l],
pci_express_x8_rxn[0], pcie_perstn, pcie_refclk_clk_p, and
pcie_refclk_clk_mn.

Listing 6.4: Vivado errors reported during the bitstream generation phase.

6.2.4 Pinout problem

Listing 6.4 contains two errors that express the same root cause, the PCle pins have not
been assigned correctly.

The 31 reported pins are classified and explained in Table 6.1.

It was noted that all signals except pcie _perstn had the double of pins to their
signal length. It is because those signals need to be connected to differential pins.

Differential pins in an FPGA are pairs of pins that are used to transmit signals dif-
ferentially. In differential signaling, a pair of signals is transmitted with opposite polarity
to each other, such that one signal represents the logical state (positive pin) and the other
represents the logical complement (negative pin). The difference between the two signals
is then used to carry the information. By transmitting signals differentially, it is possible
to achieve higher signal integrity and reduce the effects of noise and interference on the

Signal name H Number of pins \ Usage
pci_express_x8_tx 14 PCle signals C2H
pci_express_x8.rx 14 PCle signals H2C
pcie refclk clk 2 PCle clock
pcie_perstn 1 PCle reset

Table 6.1: PCle pins used in the FPGAQSDV design.

70

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

1/O Port Properties ? 00X
{J pci_express_x8_txp[7] o

Name: pci_express_x8_txp[7]

Direction: ouT

Package pin: BG28 Fixed

Site type: I0_L15P_T2L_N4_AD11P_67

Site info: 5| 10OB_XOY186

Cell: | pci_express_x8_txp[7]_OBUF_inst

Net: | pci_express_x8_tup[7] |

1/0 Bank: If0 Bank 87

Tile: [HPID_L_¥73¥210

Clock region: | X4¥3

SLR: SLRO

General FProperties Configure Fower

Figure 6.8: 1/O port properties of pin pci_express x8 txp[7] from Vivado.

signal. In an FPGA, differential pins are often used for high-speed signaling applications,
such as high-speed data transmission or clock distribution.

Therefore, each signal bit requires two pins, which are referred to as <signal name>_p
and <signal name> n in Vivado.

As those 31 pins were not specified in any XDC file, Vivado automatically assigns
them to General Purpose I/O (GPIO) pins, as can be seen in Figure 6.8. That auto-
assignation ends up producing Design Rule Checks (DRCs) violations because those sig-
nals should be connected to differential pins instead of GPIO pins.

After understanding the previous concepts and Vivado flow, the solution was realized:
defining those pins in the pinout XDC file.

Although it was not necessary for the XDMA, we have guessed that as the XDMA
IP is older than the QDMA one, the XDMA had been fine-tuned to automatically assign
correctly the pins. Whereas for QDMA, that point is still not reached as it is a newer IP
and much more complex than the XDMA one.

6.2.5 Pinout assignment

In order to be able to assign the correct PCle pins, the VCU128 files with the board
schematic were downloaded and studied.

The pins are grouped in banks. The PCle pins are located in banks 224, 225, 226
and 227 [13]. Each bank contains 18 pins grouped in 9 pairs of differential pins. Those
pairs correspond to: 1 PCle clock, 4 PCle rx, and 4 PCle tx. A graphical representation
of a bank and its pins is shown in Figure 6.9a. Those banks with differential pins are also
referred to as quads.

Figure 6.9 shows the two selected banks for this thesis: bank 227 and bank 226. To
know which banks had to be chosen, the documentation of the IP from which both XDMA

71

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

uU1-17
XCVU3T7PFSVH2892
BANK 227 MGTYTXPO_227 AP9 ;§—§ PCIE_EP_TX3 P
PCIE_EP_TX3_N

MGTYRXPO_227 AN2

A
MGTYTXNO 227 AP8 ﬁ
A
A

MGTYRXNO_227 AN1 PCIE_EP_RX3_N
MGTYTXP1_227 AN11 [aARAQ PCIE_EP_TX2_P

MGTYTXN1_227_AN10 |-axg PCIE_EP_TX2_N
MGTYRXP1_227 AN6 ‘Ams—g POIE_ER RX2 P
PCIE_EP_RX2_N

= g PCIE_EP_RX3_P
2
P2

MGTYRXN1_227_AN5 [Eaps S
MGTYTXP2_227_AM9 &wva <CPCIE_EP_TX1_P
MGTYTXN2_227_AM8 [~Ana <SPCIE_EP_TX1_N
MGTYRXP2_227_AM4 [Fapia <CPCIE_EP_RX1_P
MGTYRXN2_227_AM3 {3771 PCIE_EP_RX1_N
MGTYTXP3_227_AL11 ACTg PCIE_EP_TX0_P
MGTYTXN3 227 AL10 |-ar> <SPCIE_EP_TX0_N

MGTYRXP3_227_AL2 {35 < PCIE_EP_RX0_P
MGTYRXN3_227_AL1 WaTq5—PoIE CTRE P <K PCIE_EP_RXO_N
MGTREFGLKOP_227_AL15 3 1, PCIE CIRZ N

MGTREFCLKON 227 AL14 [areq
MGTREFCLK1P 227 AK13 :ﬁ
MGTREFCLKIN 227 AK12

FPGA-XCVU37P-H2892

(a) VCU128 pinout schematic from bank 227. Source: [13].

uUit-16
XCVUITPFSVH2892

BANK 226 MGTYTXPO 226 AU11 FATTS < PCIE_EP_TX7_P
MGTYTXNO_226_AU10 [ats3 <S PCIE EP TXT N
MGTYRXPO 226 AU2 405 CS PCIE_EP RX7 P
MGTYRXNO 226 AU1 {37 SS PCIE EP_RX7 N
MGTYTXP1 226 AT9 &g SSPOIE_EP TX6 P
MGTYTXNT 226 AT8 ara <S PCIE_EP_TX6 N
MGTYRXP1 226 AT4 fFaT3 PCIE EP RX6 P
MGTYRXN1 226 AT3 Wamy <SPCIE_EP RX6 N
MGTYTXP2 226 AR7 AR < PCIE_EP_TX5_P
MGTYTXN2 226 ARG [aps PCIE EP TX5 N
MGTYRXP2 226 AR2 {¢An= < PCIE EPRX5 P
MGTYRXN2_226 AR1 fFantq < PCIE_EP_RXS N
MGTYTXP3 226 AR11 -ARTG SS POIE EP TX4 P
MGTYTXN3 226 AR10 [apy <C PCIE_EP_TX4 N
MGTYRXP3 226 AP4 gp3 PCIE EP RX4 P
MGTYRXN3 226 AP3 [¢axy PCIE_EP RX4 N

MGTREFCLKOP 226 AN15 AN

MGTREFCLKON 226 AN14 [Fant

MGTREFCLKIP 226 AM13 i

MGTREFCLK1N 226 AM12

FPGA-XCVU37P-H2892

(b) VCU128 pinout schematic from bank 226. Source: [13].

Figure 6.9: VCU128 banks with its corresponding pins.

72

© 00 N O Ut W N

L LW W W W W W W WWNNNNNNINDNDNDLN — = e e e e e e
© 00 N O U = W N = O © 00 O Ut b W N HO OWOWSN O Ut W+~ O

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

and QDMA are built on top (Integrated Block for PCI Express (PCle) solution IP core
[37]) was consulted.

Each PCle quad is formed by 4 lanes, as can be extracted from Figure 6.9. Hence,
Xilinx recommends using consecutive lanes to improve the design place, route, and timing
[37]. That means assigning consecutive quads when the lane width is > 4.

Usually, PCle lane 0 is placed at the topmost quad and the consecutive ones are
assigned vertically down. Figure 6.10 illustrates where the XCVU37P pins are located
physically. The topmost quad inside the red square corresponds to quad 227 and there is
where lane 0 is recommended to be placed. Therefore, the PCle pins for our FPGAQSDV
design should be placed in quad 227 and 226, the pins that are colored pastel green and
baby blue, respectively. Keeping that in mind, the PCle pinout manual assignment is the

one shown in Listing 6.5.

set_property
set_property

PACKAGE_PIN
IOSTANDARD

BF41

[get_ports pcie_perstn]
LVCMOS12 [get_ports pcie_perstn]

set_property PACKAGE_PIN AL15 [get_ports pcie_refclk_clk_p]

set_property PACKAGE_PIN AL14 [get_ports pcie_refclk_clk_n]

set_property PACKAGE_PIN AU2 [get_ports {pci_express_x8_rxp[7]}]
set_property PACKAGE_PIN AU1 [get_ports {pci_express_x8_rxn[7]}]
set_property PACKAGE_PIN AT4 [get_ports {pci_express_x8_rxp[6]1}]
set_property PACKAGE_PIN AT3 [get_ports {pci_express_x8_rxn[6]1}]
set_property PACKAGE_PIN AR2 [get_ports {pci_express_x8_rxp[5]}]
set_property PACKAGE_PIN AR1 [get_ports {pci_express_x8_rxn[5]}]
set_property PACKAGE_PIN AP4 [get_ports {pci_express_x8_rxp [4]}]
set_property PACKAGE_PIN AP3 [get_ports {pci_express_x8_rxn[4]1}]
set_property PACKAGE_PIN AN2 [get_ports {pci_express_x8_rxp[3]1}]
set_property PACKAGE_PIN AN1 [get_ports {pci_express_x8_rxn[3]}]
set_property PACKAGE_PIN AN6 [get_ports {pci_express_x8_rxp[2]}]
set_property PACKAGE_PIN AN5 [get_ports {pci_express_x8_rxn[2]}]
set_property PACKAGE_PIN AM4 [get_ports {pci_express_x8_rxp[1]}]
set_property PACKAGE_PIN AM3 [get_ports {pci_express_x8_rxn[1]3}]
set_property PACKAGE_PIN AL2 [get_ports {pci_express_x8_rxp[0]3}]
set_property PACKAGE_PIN AL1 [get_ports {pci_express_x8_rxn[0]}]
set_property PACKAGE_PIN AU11 [get_ports {pci_express_x8_txp[7]}]
set_property PACKAGE_PIN AU10 [get_ports {pci_express_x8_txn[7]}]
set_property PACKAGE_PIN AT9 [get_ports {pci_express_x8_txp[6]7}]
set_property PACKAGE_PIN ATS8 [get_ports {pci_express_x8_txn[6]}]
set_property PACKAGE_PIN AR7 [get_ports {pci_express_x8_txp[5]}]
set_property PACKAGE_PIN AR6 [get_ports {pci_express_x8_txn[5]1}]
set_property PACKAGE_PIN AR11 [get_ports {pci_express_x8_txp[4]}]
set_property PACKAGE_PIN AR10 [get_ports {pci_express_x8_txn[4]}]
set_property PACKAGE_PIN AP9 [get_ports {pci_express_x8_txp[3]}]
set_property PACKAGE_PIN AP8 [get_ports {pci_express_x8_txn [3]}]
set_property PACKAGE_PIN AN11 [get_ports {pci_express_x8_txp[2]}]
set_property PACKAGE_PIN AN10 [get_ports {pci_express_x8_txn[2]}]
set_property PACKAGE_PIN AM9 [get_ports {pci_express_x8_txp[1]}]
set_property PACKAGE_PIN AMS8 [get_ports {pci_express_x8_txn[1]3}]
set_property PACKAGE_PIN AL11 [get_ports {pci_express_x8_txp [0]}]
set_property PACKAGE_PIN AL10 [get_ports {pci_express_x8_txn [0]}]

73

Chapter 6. Replacement of XDMA with QDMA

6.2. Replacement in SDV design

Listing 6.5: PCle pinout defined in the file pinout.xdc.

12 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

A
B
Cc
EQQQQ
o0
5Q95n
;!lun
Leo
munuﬂ
PO
Reﬁeﬁ E
:
LSS &
v Q9'9
w&O
MR
&0
8 9 : 2 8
OO OO QO &% S OO €O o«
24 QO & 2 2] €9
OO OO R0 Roxod OO OB
A &0 > & <@, P 0O
A g SO O S L OO OO SHne
\H
Al oL T O 0

s D AK
S 0D OO oo
s O @O v
S OO OO oom
L OP oo w
S O> OD SO
AT

ar 2% <0 Lo
xeﬁeb 0 OO [GE HE OB O 09093
- <P QQQQQQM
> oS e
> o e

RO O
0 0006

elciooecoc oLl
OO0 +ONOO OOBO -

o 06 X Q000 OOOE OMeEk

3 OC) d OO0 OOOESEOOOE -L
/00 2.0 06 d 00 00A O BM
5 NOE o 7 O 0000 OO0 BN

12 3 456 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Bank 64 [Bank72 [Quad 128 Quad 224 Quad 232
Bank 65 Bank 73 Quad 129 Quad 225 | Quad 233
Bank 66 Bank 74 Quad 130 Quad 226 | Quad 234
Bank 67 Bank 75 Quad 131 Quad 227 Quad 235
Bank 68 Quad 124 | Quad132 Quad 228
Bank 69 Quad 125 I Quad 133 Quad 229
Bank 70 Quad 126 Quad 134 Quad 230
| BankT71 Quad 127 Quad 135 Quad 231
SelectlO Pins Dedicated Pins | Transceiver Pins
@ o @ VRrer € MGT[R, Hor YIRXP#
@ 10N MGTAVTTRCAL & MGT[R, Hor YJRXN#
® 10 (single-ended) MGTRREF @ MGTR, Hor VTXP#
@© ro.pce 4@ MGTR, Hor YITXN#
@ 1o_Len_Ge & MGTREFCLK#P
O wp & MGTREFCLKAN

Figure 6.10: XCVU37P physical representation of its pinout with PCle quads marked.

6.2.6 New pinout problem

Once the pinout definition was added and both synthesis and implementation were reset,
Vivado was launched again to generate the bitstream. Unexpectedly, right after the

74

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

implementation, the same errors as in Listing 6.4 appeared. There were DRC violations
in the PCle pins, but this time only the tx pins were reported, as is shown in Listing 6.6.
Although only failed the pins [7, 1], the pci_express_x8_tx[0] was well-defined.

[DRC NSTD-1] Unspecified I/0 Standard: 14 out of 162 logical ports use I
/0 standard (IOSTANDARD) value ’DEFAULT’, instead of a user assigned
specific value. This may cause I/0 contention or incompatibility with

the board power or connectivity affecting performance, signal
integrity or in extreme cases cause damage to the device or the
components to which it is connected. To correct this violation,
specify all I/0 standards. This design will fail to generate a
bitstream unless all logical ports have a user specified I/0 standard
value defined. To allow bitstream creation with unspecified I/O
standard values (not recommended), use this command: set_property
SEVERITY {Warning} [get_drc_checks NSTD-1]. ©NOTE: When using the
Vivado Runs infrastructure (e.g. launch_runs Tcl command), add this
command to a .tcl file and add that file as a pre-hook for
write_bitstream step for the implementation run. Problem ports:
pci_express_x8_txp[7], pci_express_x8_txp[6], pci_express_x8_txpl[5],
pci_express_x8_txp[4], pci_express_x8_txp[3], pci_express_x8_txpl[2],
pci_express_x8_txp[1], pci_express_x8_txn[7], pci_express_x8_txnl[6],
pci_express_x8_txn[5], pci_express_x8_txn[4], pci_express_x8_txn[3],
pci_express_x8_txn[2], and pci_express_x8_txn[1].

[DRC UCIO-1] Unconstrained Logical Port: 14 out of 162 logical ports
have no user assigned specific location constraint (LOC). This may
cause I/0 contention or incompatibility with the board power or
connectivity affecting performance, signal integrity or in extreme
cases cause damage to the device or the components to which it is
connected. To correct this violation, specify all pin locations. This

design will fail to generate a bitstream unless all logical ports
have a user specified site LOC constraint defined. To allow
bitstream creation with unspecified pin locations (not recommended),
use this command: set_property SEVERITY {Warning} [get_drc_checks
UCIO-1]. NOTE: When using the Vivado Runs infrastructure (e.g.
launch_runs Tcl command), add this command to a .tcl file and add
that file as a pre-hook for write_bitstream step for the
implementation run. Problem ports: pci_express_x8_txpl[7],
pci_express_x8_txp[6], pci_express_x8_txp[5], pci_express_x8_txpl[4],
pci_express_x8_txp[3], pci_express_x8_txp[2], pci_express_x8_txpl[1l],
pci_express_x8_txn[7], pci_express_x8_txn[6], pci_express_x8_txn[5],
pci_express_x8_txn[4], pci_express_x8_txn[3], pci_express_x8_txn[2],
and pci_express_x8_txn[1].

Listing 6.6: Vivado errors reported during the bitstream generation phase.

It was very strange since the other PCle pins were correctly assigned in the post-
implementation design.

The first possibility was that tx pins were not properly defined. They were checked
and they were already well-defined. Just to be completely sure, I cloned a vanilla XDMA
project and replaced the pinout file with the one modified, with the PCle pins explicitly

5

B W N =

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

~ @ . epac_full_wrapper_top_board (epac_full_wrapper_top_board.sv) (2]
w design_1_i: design_1 (design_1.bd) (90)
[F[E design_1_GPIO_reset_sync_0 (design_1_GPI0_reset_sync_0.xci)
F[E design_l_ariane_apb_uart_0_0 (design_1_ariane_apb_uart_0_O.xci)

design_1l_auto_cc_0 (design_1_suto_cc_C
design_1_auto_cc_1 (design_1_sut
design_l_auto_cc_2 (design_1_sut
design_1_auto_cc_3 (design_1_sufo_
design_l_auto_cc_4 (design_1_sut

design_1_suto_cc_5 (design_1_suto_cc_S.xci)
design_l_auto_ds_0 (design_1_auto_ds_0.xci)

(a) BD files in a clean Vivado project.

~ @ & epac_full_wrapper_top_board (epac_full_wrapper_top_board.sv) (2]
v design_1_i: design_1 (design_1.bd) (1
~ @ design_1 (design_1.v) (31)
> @ CHI_IO_SN_INTERCONNECT : design_L_CHI_IO_SN_INTERCONNECT_0 (design_1.v)
CHI_I0_SN_INTERCONNECT : design_1 CHI IO _SN_INTERCONNECT 0
> @ ETHERMET : ETHERNET_imp_l GERSXX (design_L.v
» 1F@ GPIO_reset_sync : design_1_GPIO_reset_sync_0 (design_1_GPIO_reset_sync_0.xci
> @ JTAG : JTAG_imp_Q5BD50 (design_1.v)
> @ UART : UART imp_lASUCET (design_1.v)

(b) BD files post-synthesis in a Vivado project.

Figure 6.11: Source files describing a BD in Vivado.

specified. The previous errors did not appear and the bitstream was generated. Therefore,
the source of the errors had to be somewhere else.

The other major change was in the BD, as the PCle IP had been. The parameter
from both XDMA and QDMA IPs were compared via the Vivado GUI, with the emergent
window that appears to change an IP configuration. There were no differences in the
parameters that could affect the IP’s output port pcie mgt.

After that verification, what was left to check were the intermediate files generated
during the Vivado bitstream generation flow. It was realized that new files appeared
post-synthesizing the BD design, as can be seen in Figure 6.11. The generated Verilog
files are automatically created by Vivado. In the Verilog BD top file, design.v, the PCle
signals were searched.

Listing 6.7 contains the relevant lines with the PCle signals tx and rx. It is noticed
that the pci_express_x8 rx signals are declared as 8-bit signals, whereas the tx signals
are only 1-bit wide. That explains why the least significant bit from pci_express_x8_tx
was correctly assigned, it was because it was declared.

// L. ..

// signal declaration

(* X_INTERFACE_INFO = "xilinx.com:interface:pcie_7x_mgt:1.0
pci_express_x8 rxn" *) input [7:0] pci_express_x8_rxn;

(* X_INTERFACE_INFO = "xilinx.com:interface:pcie_7x_mgt:1.0
pci_express_x8 rxp" *) input [7:0]pci_express_x8_rxp;

(* X_INTERFACE_INFO = "xilinx.com:interface:pcie_7x_mgt:1.0

pci_express_x8 txn" *) output pci_express_x8_txn;

76

10
11
12
13
14
15
16
17
18

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

(* X_INTERFACE_INFO = "xilinx.com:interface:pcie_7x_mgt:1.0
p g
pci_express_x8 txp" *) output pci_express_x8_txp;

70 Lo ool

// signal assignment
assign pci_express_x8_txn = qdma_O_pcie_mgt_txn [0];
assign pci_express_x8_txp gdma_O_pcie_mgt_txp [0];

assign qdma_O_pcie_mgt_rxn = pci_express_x8_rxnl[7:0];
assign qdma_O_pcie_mgt_rxp pci_express_x8_rxp[7:0];

70 Lo ool

Listing 6.7: Relevant PCle lines from design.v file.

Subsequently, the root issue had to be found, since the design.v file is being gener-
ated by Vivado automatically and it was well-produced for the XDMA project. It became
clear that something in the QDMA IP was off, and the settings were checked again. Al-
though this time they were verified in a different Vivado window, the Block Properties
window. Figure 6.12 contains the Block properties for each IP. It can be seen that the
highlighted property, PCIE_BOARD_INTERFACE, is different. That could be the cause for
not having the correct signal sizes.

The PCIE_BOARD_INTERFACE value in the QDMA project was fixed manually. Then
it was verified that the other parameters were correct and the bitstream generation flow
was run again.

Finally, the QDMA bitstream was created correctly with no errors.

Block Properties ?2 001 X Block Properties ? 00 X
qdma_0 - o qdma_0 - o
Q = = | - 0 Qa = = |4 - 0
ALLOWED_SIM_MODELS rtl ~ ALLOWED_SIM_MODELS rtl ~
CLASS bd_cell CLASS bd_cell
~ CONFIG ~ CONFIG
BASEADDR 0x00001000 BASEADDR 0x00001000
Component_Name design_1_qdma_0_0 Component_Mame design_1_qdma_0_0
EGW _IS_PARENT IP 1 EGW_IS_PARENT_IP 1
HIGHADDR 0x00001FFF HIGHADDR Ox0000L1FFF
INS_LOSS5_NYQ 15 INS_LOSS_NYQ 15
MAILBOX_EMABLE false MAILBOX_ENABLE false
MSI_X_OPTIONS MSI-¥_External MSI_X_OPTIONS MSI|-¥_External
PCIE_BOARD_INTERFACE pci_express_x8 PCIE_BOARD_INTERFACE pci_express_x1
PFO_MSIX_CAP_PBA BIR ¢ BAR 0 PFO_MSIX_CAP_PBA_BIR_c BAR_O
(a) XDMA properties. (b) QDMA properties.

Figure 6.12: TP properties shown in the Block Properties window from Vivado GUI.

77

N O Ot W N

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

6.2.7 Driver and tools compilation

Xilinx provides two QDMA drivers: PF module and VF module, as it was explained in
Section 4.6.4. The PF module is the one that had to be used for this thesis, since the
QDMA IP inside the FPGA is set to use only a PCle PF. The source code is in a public
GitHub repository called dma_ip_drivers®.

The PF module was compiled in the Pickle x86 processor with a simple make driver
MODULE=mod_pf command. A .ko file was generated named gqdma_pf .ko.

The compilation of the tools was also done in the host machine executing make apps.
It generated all 5 tool’s binaries.

6.2.8 Data word test

The data word test is a C program that:

1. Opens the FPGA device,
2. Writes a word (4 bytes) to an FPGA memory direction,
3. Reads from the same memory direction a word, and

4. Compares if the written word is equal to the read word.

The code written to perform this test is at appendix A.1, in Listing A.1.

The only part of the code dependent on the type of PCle subsystem used is the first
one, opening the FPGA device. It opens the XDMA H2C and C2H 0 channels, or the
QDMA H2C and C2H 0 queues, depending on what is passed as an argument: xdma or
gdma. The rest of the code, and steps, are independent of the PCle subsystem. The data
word test was first tested in the XDMA environment (driver and bitstream).

The objectives of this test are i) checking if the H2C and C2H channels/queues can
be accessed properly with a C program and i) verifying that data flows in both directions
correctly. In other words, make sure that the QDMA IP and the driver and queues are
properly configured.

This code was first tested with the XDMA IP and driver to validate its functionality
with regard to verifying QDMA. Listing 6.8 contains the output from the execution of
that test and it can be seen in the last line that the test was successful.

$./data_test xdma

Stating data test for XDMA:

Writing data Oxabcdefl2 to address 0x800000000000
Writing into FPGA

Written bytes: 4

Reading from FPGA

Read bytes: 4

https://github.com/Xilinx/dma_ip_drivers

78

https://github.com/Xilinx/dma_ip_drivers

8
9

w

© 00 N O Ot

11
12

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

Read bytes: 4
Read word abcdefl12 is EQUAL than the test word abcdefl2

Listing 6.8: Output from the terminal after executing the data word test binary.

6.2.9 Loading the driver

The compiled module file had to be inserted in the kernel to be able to use it. The Linux
installed in the host machine provides different commands to manage kernel modules,
which are shown in Table 6.2.

Module Function ‘ Commands

Insert module modprobe, insmod
Remove module modprobe, rmmod
List current modules 1smod

Show module information | modinfo

Table 6.2: Linux commands to manage kernel modules.

Firstly, it was checked if the XDMA module was installed with 1smod | grep xdma
command. It reported that the XDMA driver was loaded, so it was removed with sudo
/sbin/rmmod xdma. After removing it, the QDMA driver had to be loaded.

Prior to inserting the QDMA module, its parameters were checked with the modinfo
command. Listing 6.9 contains some of the modinfo output and it can be seen that the
mode parameter is the one that needs to be configured. This parameter is defined with the
bus number, the PF number and the mode, which was detailed in Section 4.6.4. The bus
number depends on the PCle slot where the FPGA is plugged and how Linux identifies
it, hence it was identified with the command 1spci, which lists all PCI devices, including
the PCle ones. That command reports both bus number and PF, although the PF was
already known from the QDMA IP configuration, so their value is 08 and 0, respectively.
The mode depends on the interrupt type set in the QDMA IP, so the mode was 4 as is the
one for legacy interrupts. Therefore, the QDMA driver parameter was mode=0x08:0:4.

aquerol@pickle-5 ~“/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
\$ modinfo qgdma-pf.ko

filename: /home/aquerol/tfm/dma_ip_drivers/QDMA/linux-kernel/bin/
qdma-pf . ko

license: Dual BSD/GPL

version: 2023.1.0.0.

description: Xilinx QDMA PF Reference Driver

author: Xilinx, Inc.

srcversion: A9EO58C9EAFC72CF9E4DD21

[...]

name : qdma_pf

vermagic: 5.4.0-139-generic SMP mod_unload modversions

parm: mode :Load the driver in different modes, dflt is auto

mode, format is "<bus_num>:<pf_num>:<mode>" and multiple comma
separated entries can be specified (string)

79

13

14

15

O

10
11
12

13
14

15
16

17
18

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

parm: config_bar:specify the config bar number, dflt is O,

format is "<bus_num>:<pf_num>:<bar_num>" and multiple comma separated
entries can be specified (string)

parm: master_pf:specify the master_pf, dflt is 0, format is "<
bus_num>:<master_pf>" and multiple comma separated entries can be
specified (string)

parm: num_threads :Number of threads to be created each for
request and writeback processing (uint)

Listing 6.9: Console output from the modinfo command

First, the modprobe command was tried, but it did not work because it looks for
modules in the module directory under /1ib/modules/, and not in a path given by the
user. Therefore, the insmod command had to be used as it allows inserting modules from
a given path. The command line executed was sudo /sbin/insmod bin/qdma pf.ko
mode=0x08:0:4. Afterward, it was checked if the driver was loaded with the command
1lsmod.

After that validation, the bitstream was programmed into the FPGA. Then, the
device control tool named dma-ctl (explained in Section 4.6.4) was used to show devices
with QDMA. However, it reported nothing. Therefore, the output of the command dmesg
was checked. This command displays all kernel messages and it showed the contents from
Listing 6.10. It can be observed that the QDMA module failed to initialize the QDMA
device.

[17:02] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel

\$ dmesg

[...]

[955775.545957] qgdma_pf:qdma_mod_init: Xilinx QDMA PF Reference Driver
v2023.1.0.0.

[955775.546301] gdma_pf:probe_one: 0000:08:00.0: func 0x0, p/v 0/0,0
x0000000000000000 .

[955775.546305] qgdma_pf:probe_one: Configuring ’08:00:0°’ as master pf

[955775.546306] qgdma_pf:probe_one: Driver is loaded in legacy interrupt
(4) mode

[955775.546307] qgdma_pf:qgdma_device_open: gdma-pf, 08:00.00, pdev O
x000000007e662b7b, 0x10ee:0x9028.

[9565775.546438] Device Type: Soft IP

[965775.546440] IP Type: EQDMA4.0 Soft IP

[955775.546440] Vivado Release: vivado 2020.2

[955775.546450] qgdma_pf:qdma_device_attributes_get: qdma08000-p0000
:08:00.0: num_pfs:1, num_gs:512, flr_present:0, st_en:0, mm_en:1,
mm_cmpt_en:0, mailbox_en:0, mm_channel_max:1, qid2vec_ctx:0,
cmpt_ovf_chk_dis:1, mailbox_intr:1, sw_desc_64b:1, cmpt_desc_64b:1,
dynamic_bar:1, legacy_intr:1, cmpt_trig_count_timer:1

[955775.546452] qdma_pf:qgdma_device_open: Vivado version = vivado 2020.2

[955775.546454] qdma_dev_entry_create: Created the dev entry
successfully

[955776.151830] hw_monitor_reg: Reg read=5 Expected=0, err:-3

[955776.157313] eqdma_indirect_reg_clear: hw_monitor_reg failed with err
:-3

[955776.164013] gdma_pf:qdma_device_init: init ctxt write failed, err -3

[955776.170451] qgdma_pf:qdma_device_online: gdma_init failed -16.

80

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

19 | [9556776.170451] qdma_pf:qdma_device_open: Failed to set the dma device
online, err = -16
20 | [955776.170530] qdma-pf: probe of 0000:08:00.0 failed with error -16

Listing 6.10: Console output from the dmesg command

Some research indicated that it was because there were 3 signals that needed to be
set to 1. Those signals are tm_dsc_sts_rdy, gsts_out_rdy and soft_reset_n. The first
two signals belong to the two AXI buses not used in the QDMA IP and they are ready
signals, which indicate to the IP that everything is ready to start. The soft_resetn
signal corresponds to the DMA reset for the IP. To set them to 1, a constant IP was
instantiated in the BD and configured as Figure 6.13 shows and its output was connected
to those signals as Figure 6.14 displays. With those additions performed, a new bitstream
was generated.

e Re-customize IP + X
Constant (1.1) /
@ Documentation IP Location

[show disabled ports Component Name qdma_rdy constant

Const Val 1

dout[0:0]

(=]

K ‘ | Cancel

Figure 6.13: Constant IP settings.

gqdma_0
M_AXI = i
pcie_mgt + ||
B ” o5 e [pcie_cfg_ext == "_L
|| 4+ dsr:_trdt in tm_dsc_sts + "
cvs cI; - tm_dsc_sts rdy «
¥S_
g gsts_out + ||
= st_ qsts_out_rdy «
L——0 sysrst.n
- - user_Ink_up =~
——0 soft_reset n ‘,‘p
= = axi_aclk
axi_aresetn o——1+
phy_ready =

Queue DMA Subsystem for PCI Express

gdma_rdy_constant

dout[0:0]]7

Constant

Figure 6.14: BD with the ready and soft reset signals from QDMA connected to a Constant
IP.

81

© 00 N O

10

11

12

© 00 N O Utk W N

Ju—
=]

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

6.2.10 Queue configuration

Once the bitstream was generated, it was programmed into the FPGA and the dmesg
output was checked again. As Listing 6.11 shows, this time the QDMA module was
loaded successfully.

[1795969.178347] qdma_pf:qdma_mod_init: Xilinx QDMA PF Reference Driver
v2023.1.0.0.

[1795969.178745] qdma_pf:probe_one: 0000:08:00.0: func 0x0, p/v 0/0,0
x0000000000000000 .

[1795969.178750] qdma_pf:probe_one: Configuring ’08:00:0°’ as master pf

[1795969.178751] qdma_pf:probe_one: Driver is loaded in legacy interrupt
(4) mode

[1795969.178754] qdma_pf:qdma_device_open: gdma-pf, 08:00.00, pdev O
x00000000058486ee, 0x10ee:0x9028.

[1795969.178916] Device Type: Soft IP

[1795969.178918] IP Type: EQDMA4.0 Soft IP

[1795969.178919] Vivado Release: vivado 2020.2

[1795969.178930] qdma_pf:qdma_device_attributes_get: qdma08000-p0000
:08:00.0: num_pfs:1, num_gs:512, flr_present:0, st_en:0, mm_en:1,
mm_cmpt_en:0, mailbox_en:0, mm_channel_max:1, qid2vec_ctx:0,
cmpt_ovf_chk_dis:1, mailbox_intr:1, sw_desc_64b:1, cmpt_desc_64b:1,
dynamic_bar:1, legacy_intr:1, cmpt_trig_count_timer:1

[1795969.178932] qdma_pf:qdma_device_open: Vivado version = vivado
2020.2

[1795969.178934] qgdma_dev_entry_create: Created the dev entry
successfully

[1795969.184503] qgdma_pf:qdma_device_open: 0000:08:00.0, 08000, pdev O
x00000000058486ee, xdev 0x000000002e667a75, ch 1, q 0, vf O.

Listing 6.11: Console output from the dmesg command

The following stage was configuring the queues with the dma-ctl tool as Listing 6.12
shows. First, the device name was obtained with the command from Line 2. Its output
also reports the maximum number of Queue Pairs (QP) that can be assigned to a given
QDMA device. By default, max QP is set to 0, so a configuration file has to be modified
with the value desired, as Line 10 exposes. Line 17 shows the dma-ctl device list with
the modified max QP. A queue needs to be created and then started so it is functional.
Line 21 created the queue for the QDMA device with index 0, in Memory-Mapped (MM)
mode and for the host-to-card (H2C) direction. It was checked that no errors arose with
dmesg, in Line 24. Finally, the queue in the opposite direction, card-to-host (C2H), had
to be created as Line 28 exhibits. However, a dmesg error message appeared (Line 31).

[11:40] aquerol@pickle-5 "/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$./dma-ctl dev list
qdma08000 0000:08:00.0 max QP: 0, -"-

[11:41] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$ cat /sys/bus/pci/devices/0000:08:00.0/qgdma/qgmax
0

[11:57] aquerol@pickle-5 ~/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$ echo 8 > /sys/bus/pci/devices/0000:08:00.0/qgdma/qgmax

82

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

[12:00] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$ cat /sys/bus/pci/devices/0000:08:00.0/qgdma/qgmax
8

[12:00] aquerol@pickle-5 ~/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$./dma-ctl dev list
qdma08000 0000:08:00.0 max QP: 8, 077

[12:02] aquerol@pickle-5 "/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$./dma-ctl qdma08000 g add idx O mode mm dir h2c

[12:02] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin

$ dmesg

[1811004.776719] qdma_pf:intr_legacy_clear: un-registering legacy
interrupt from qdma08000

[12:03] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$./dma-ctl 9qdma08000 q add idx O mode mm dir c2h

[12:03] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
\$ dmesg
[1811031.554648] qdma_pf:xnl_q_add: xpdev_queue_add() failed: -22

Listing 6.12: Commands and output from the console.

Researching in the QDMA driver source code, it was found the following comment:
/** support only 1 queue in legacy interrupt mode */,in file QDMA/linux-kernel/
driver/libqgdma/libgdma_export.c. Therefore, having one queue per direction was not

feasible with legacy interrupts and it was decided to use MSI interrupts.

6.2.11 MSI interruptions

In order to change the interrupt type from legacy to MSI, the Legacy Configuration Ex-
tended interface option has to be deactivated, as can be observed in Figure 6.15. The

bitstream was regenerated.

83

© 00 N O U W N

_= =
= o

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

e Re-customize IP + X

Queue DMA Subsystem for PCI Express (4.0)

@ Documentation IP Location
Show disabled ports Component Name gdma_o
Basic Capabilities PCle: BARs PCle: MISC PCle: DMA Debug and Additional Options
MSI-X Capabilities
PFO
[[] enable PFO MSIX Capability Structure
MSI-X Table Settings
Table Size 000 000.01F
MU i Miscellaneous
ll[+ usr_irg peie mat +||
o &) Extended Tag Field
cie_cfg_ext
I+ dsc_crdtin peie_cfg_ext 4+
sys_clk tm_dsc_sts + ”] Configuration Extended Interface Legacy Configiuration Extended Interface
- ket gsts_out |||
Sys_cik_gi user_Ink_up Add the PCle XVCVSEC to the Example Design
Sys_rst_n)
axi_aclk
soft_reset_n . &) Configuration Management Interface
axi_aresetn
phy_ready Link Status Register
Selects whether the device reference clock is provided by the connector
{Synchronous] or generated via an onboard PLL{Asynchronous)
&) Enable slot Clock Configuration

Figure 6.15: QDMA MISC tab with MSI interruptions enabled.

The driver had to be removed and loaded with a different mode, which was the
Direct Interrupt mode (2). Therefore, the module parameter was mode=0x08:0:2. After
loading the QDMA driver and reprogramming the FPGA, the queues were added and
initialized as can be observed in Listing 6.13. Line 5 adds a bi-directional MM QP, in
other words, with a single command the two directions from the QP are added. Line 8
starts this queue in both directions. The command dmesg reported some errors related
to AXI completion (ST or MM cmpt not supported), which can be ignored because the
completion is managed automatically by the QDMA IP; and other errors related to AXI-
ST (ST is not supported), which is a not-used interface in our design, so it is expected
to report an AXI-ST error. Finally, the QDMA device appeared, as can be seen in Line 22.

[16:34] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$ echo 8 > /sys/bus/pci/devices/0000:08:00.0/qgdma/qgmax

[16:35] aquerol@pickle-5 "/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$./dma-ctl qdma08000 q add idx O mode mm dir bi

[16:35] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$./dma-ctl 9dma08000 q start idx O dir bi

[16:35] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
$ dmesg

84

12

13
14

15
16

17
18

19
20
21
22
23

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

[6620394.605029] qdma_global_writeback_interval_read: ST or MM cmpt not
supported, err:-7

[6620394.612939] qgdma_pf:qdma_csr_read: Hardware Feature not supported

[6620394.612944] qdma_read_global_buffer_sizes: ST is not supported, err
3 =T

[6620394.619642] qdma_pf:qdma_csr_read: Hardware Feature not supported

[6620394.619647] qdma_read_global_timer_count: ST or MM cmpt not
supported, err:-7

[6620394.626952] qdma_pf:qdma_csr_read: Hardware Feature not supported

[6620394.626956] qdma_read_global_counter_threshold: ST or MM cmpt not
supported, err:-7

[6620394.634778] qdma_pf:qdma_csr_read: Hardware Feature not supported

[16:36] aquerol@pickle-5 “/tfm/dma_ip_drivers/QDMA/linux-kernel/bin
\$ 1ls /dev/qdmax
/dev/qdma08000-MM-0

Listing 6.13: Commands and output from the console.

The data word test was used to check the QDMA environment. It did not work
because it could not open the QDMA device. As dmesg did not report any error, the
driver was reloaded with a different mode, the Indirect Interrupt Mode with value 3.
The queues were configured again and the data word test encountered the same error.
Consequently, it was decided to test a bitstream with MSI-X interrupts.

6.2.12 MSIx interruptions

To disable MSI and configure MSI-X interrupts, the Enable PF0 MSI-X Capability Struc-
ture checkbox was enabled and the MSI-X table size was set with the default value. The
bitstream was generated and programmed into the FPGA.

As the driver was already loaded with the Indirect Interrupt Mode, it was not neces-
sary to reload it because after each bitstream reprogram the PCle devices are rescanned
and the driver can initialize automatically the new QDMA-compatible device. The MM
queues were configured as in the previous section and the data word test could not open
the QDMA device anyway.

One possibility was that the QDMA TP was not well configured because, while re-
searching the error related to signals tm_dsc_sts_rdy, qsts_out_rdy and soft_reset.n
(explained previously in Section 6.2.9), two main different possibilities were equally ex-
plained in the official Xilinx forums. One was the solution implemented previously: the
three signals set to 1, while the other was setting the two ready signals to 1 and connect-
ing the soft reset signal to the same source as the PCle reset (sys_rst_n). Hence, the
second possibility was implemented changing the soft reset source, as can be observed in
Figure 6.17.

The newly generated bitstream was tested, but the problem remained unsolved. Once
at this point, a new approach was taken: trying to track down the reason why XDMA was
working while QDMA was not. This perspective led to discovering that the XDMA device
had different permissions than the QDMA one. That was due to a udev rule that was
defined for XDMA. An udev rule is a Linux configuration file that specifies how the system

85

Chapter 6. Replacement of XDMA with QDMA

6.2.

Replacement in SDV design

Queue DMA Subsystem for PCI Express (4.0)
@ Documentation

IP Location

() show disabled ports

M_AXL
peie_mgt +||
I+ usr_irg
- cie_cfg_ext
Jl[+ dsc_crdt_in peie cfg ext 4|
pm tm_dsc_sts +|||
sys_c\k a gsts_out +|||
- ti user_Ink_up
sys_rst.n)
Ik
soft_reset_n L

axi_aresetn
phy_ready

Re-customize IP

Component Name gqdma_0

Basic Capabilities PCle: BARs PCle: MISC PCle: DMA

MSI-X Capabilities
PFO
(] Enable PFO MSI-X Capability Structure
MSI-X Table Settings

Table Size 007 000..01F

Miscellaneous
) Extended Tag Field
) configuration Extended Interface
() Add the PCle ¥VCA/SEC to the Example Design

) configuration Management Interface

Link Status Register

Debug and Additional Options

() Legacy Configiuration Extended Interface

Selects whether the device reference clock is provided by the connector

(Synchronous) or generated wia an onboard PLL{Asynchronous}

(] Enable Slot Clock Configuration

Figure 6.16: QDMA MISC tab with MSIx interruptions enabled.

qdma_0
M_AXI 4
pcie_mgt 4 "
. ie_cfg_ext =+ "
e " + usrirg [

" + dsc_crdt_in tm_dsc_sts + "

—_— tm_dsc_sts_rdy 4
sys:clkigt gsts_out 4 "

r————————=Q sys_rst_n

-——a soft_reset_n

gsts_out_rdy <«

user_Ink_up —

axi_aclk

axi_aresetn

phy_ready

Queue DMA Subsystem for PCI Express

Figure 6.17:
sys_reset_n.

gdma_rdy_constant
dout[0:0]

Constant

86

BD with the soft_resetn signal connected to the same source as

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

should handle specific devices or events, which allows customization and automation of
device-related tasks. For this reason, a new udev rule was required for QDMA devices. It
was asked to the system administrator of the cluster. As soon as it was created, the data
word test was executed and it finished successfully.

With this successful test, it was clear that the same write and read code could be
used indistinctively of the PCle subsystem underneath. That fact was key so the final
part of the technical development could be performed, which was changing the SDV tools
and checking out if the Linux image could still be loaded.

6.2.13 Adapt SDV tools

The SDV tools only required changing the devices from the XDMA ones to the QDMA
new ones, as the same write and read mechanisms used for the XDMA driver and IP
could be reused. It was a simple change because only two lines had to be replaced. On
the one hand, Listing 6.14 contains the XDMA device opening, and on the other hand,
Listing 6.15 shows those lines for the QDMA devices.

~ ; - 1 |c2h_fd = open("/dev/qdma08000-MM
h2c_fd = open("/dev/xdmaO_h2c_0 ~0", O_RDWR);

, O_RDWR); 21// [...]

// ["‘1 . . 3 |c2h_fd = open("/dev/qdma08000 -MM
c2h_fd = open("/dev/xdmaO_c2h_0 ~0", O_RDWR);

, O_RDWR) ;

Listing 6.15: Device-related lines
modified in the C code used in the SDV
tools for QDMA.

Listing 6.14: Device-related lines in the
C code used in the SDV tools for XDMA.

After changing the devices, the final tests were performed: offloading the Linux
image and checking if EPAC boots properly. The tool that offloads the Linux images
was executed, followed by opening a UART shell to verify that the boot process finishes
properly. After the boot procedure, the login appeared and the FPGAQ@QSDV could
be used perfectly as usual, as the vanilla version with XDMA.

6.2.14 Process automation

At this point, a functional bitstream, a properly loaded and configured driver, and
FPGAQ@SDV tools adaptation were achieved. However, became obvious that the workflow
to be able to use the FPGA@SDV was more complex with QDMA than with XDMA.

Assuming the driver is already loaded, the XDMA workflow consists of reprogram-
ming the FPGA and booting Linux, a two-step procedure. Whereas, the QDMA workflow
requires reprogramming the FPGA, changing the QMAX file, creating the queue, starting
the queue, and finally booting Linux, which implies 3 more steps for the users.

Those 3 extra actions may seem trivial once you know what to do, but the SDVs are
used by many users with different backgrounds and setting up the FPGA@QSDV should
not be more complex. On the contrary, the process should be equal, or even better, easier.

87

—_
= O © 00 N O Ut s W N

= =
w N

Chapter 6. Replacement of XDMA with QDMA 6.2. Replacement in SDV design

Moreover, it was checked if the XDMA and QDMA drivers could coexist without having to
remove and load them each time. The answer was that both drivers can exist side-by-side
without problems, which avoids reconfiguring modules from one user to another.

Pickle nodes can be allocated from two different partitions: fpga and fpga-sdv, as
was detailed in Section 3.2. For the users of the first partition, a Bash script was created to
omit the explicit QDMA setup, which is shown in Listing 6.16. For the fpga-sdv partition,
the necessary add and start queue commands were included in the Slurm configuration
so users can request the QDMA release. Figure 6.18 exhibits a Slurm allocation of a
fpga-sdv node with the QDMA release and how it can be properly accessed. This way,
both target users are covered and the underlying PCle subsystem is transparent to them.

#!/bin/bash

1. Change (QMAX value
echo 8 > /sys/bus/pci/devices/0000\:08\:00.0/qgdma/qgmax
echo "QMAX value set to 8"

2. Add queue
$gdma_path/dma-ctl qdma08000 q add idx O mode mm dir bi
echo "Bi-directional Queue O added"

3. Start queue
$qdma_path/dma-ctl qdma08000 gq start idx O dir bi
echo "Queue 0 started"

Listing 6.16: Bash script to automate setting up QDMA driver and queues.

b Terminal - aquerol@fpga-sdv-4: ~

File Edit View Terminal Tabs Help

minimal-network+ ri

Figure 6.18: Console screenshot allocationg a Pickle node in fpga-sdv mode with the
QDMA configuration.

88

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

6.3 Evaluation

In order to evaluate the improvement or the worsening of the PCle subsystem IP replace-
ment, a series of tests and metrics have been extracted from both XDMA and QDMA
IPs.

The performance tests have been executed with the XDMA vanilla bitstreams and the
final QDMA bitstream (with MSI-X and the soft reset connected to the PCle reset signal).
Therefore, both functional designs can be compared in performance terms: bandwidth and
time to offload the Linux image.

Moreover, metrics from Vivado have been extracted to not only evaluate its per-
formance but its implications in the design. Those metrics are resource utilization, the
synthesis and implementation time required, and the WNS. They have been obtained
for all the available implemented versions, although not all of them have worked in the
FPGA. The reason behind comparing all of them is to be able to understand better the
differences between the XDMA vanilla design and the final QDMA one, since the other
QDMA designs have had a change at a time. All bitstreams were generated with the same
synthesis and implementation settings, in the same machine and with the same Vivado
version.

Table 6.3 contains the nomenclature for the different generated versions. Those
abbreviated names will be used from now on.

Abbreviation name ‘ Full version name

XDMA vanilla Starting point of FPGAQSDV design with XDMA

QDMA Legacy + no rdy | QDMA with Legacy interrupts without ready and soft reset connected
QDMA Legacy + rdy QDMA with Legacy interrupts with ready and soft reset connected
QDMA MSI QDMA with MSI interrupts

QDMA MSIx QDMA with MSIx interrupts

QDMA MSIx + sft rst QDMA with MSIx interrupts and soft reset connected to PCle reset

Table 6.3: Abbreviated and full name from the different versions tested and generated in
this thesis.

6.3.1 Data burst performance

A benchmark was created to evaluate the actual performance of both PCle subsystems
obtaining the transfer time and bandwidth.

The base of this benchmark is the data word test explained in Section 6.2.8. That
test has been expanded to send a buffer of N elements instead of a single word of 4 bytes
and it is also written in C.

The input arguments for the test are the type of PCle subsystem (xdma or qdma)
and the number of buffer elements. Hence, the number of bytes sent and received is
N elements x 4 bytes/element. The tests measures the time dedicated reading and
writing only, not the whole execution. Listing 6.17 contains the execution and output of
the Data Burst test binary for QDMA and 32 4-byte elements.

89

© 00 N O U W N

e e e
T W N = O

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

[13:34] aquerol@pickle-5 ~/fpga-platforms-portability/data_test
$./data_buffer_test qdma 32

Stating data test for (QDMA:

Allocating and initializing test_buffer of 32 elements, 128 bytes
test 6b8b4567, test read O

Writing 128 bytes to address 0x800000000000

Writing into FPGA

Written bytes: 128

Reading from FPGA

Read bytes: 128

Total unmatched word O

Time_write 80 us

Time_read 36 us

Listing 6.17: Execution and output from the data buffer test in Pickle-5.

The code written to perform this test is in Listing A.2 found in Appendix A.2,
together with a Bash script, in Listing A.3. That script was developed to execute the
Data Burst test with different buffer sizes and extract the write and read time in CSV
format by parsing the test output. The performance was obtained with different buffer
sizes, from 2! elements (4 bytes) to 228 elements (1 GB), incrementing by 1 the exponent
each time.

Knowing the transfer time and bytes sent, the bandwidth (BW) is trivial to extract,
since it is a derived metric. The formula to obtain it is B = D/t, where B is the bandwidth
measured in MB/s, D is the data size (or buffer size) measured in MB (megabytes), and
t is the time in s (seconds) measured for transferring the data through the PCle.

The Data Burst test was executed 5 times with each buffer size for both XDMA and
QDMA. As the standard deviation is less than 5%, the error bars are not shown in the

plots below. Then, the extracted data was processed and the resulting data is shown in
Table 6.4 for the XDMA design and in Table 6.5 for the QDMA one.

Plots with write-read time, bandwidth and latency were generated from that data.
All plots contain in the X-axis the buffer size, which has been modified from the vanilla
number (as in tables) to a more readable number, for example, from 131072 to 128K.
Moreover, the color code is purple for write transfers and orange for read transfers, and
a less saturated color for XDMA and more saturated for QDMA.

90

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

Buffer size (B) : Write . Read
Time (us) ‘ BW (MB/s) || Time (us) ‘ BW (MB/s)

4 54.4 0.1 19.6 0.207
8 47.8 0.2 21 0.383
16 60.0 0.3 24.6 0.679
32 55.4 0.6 38.2 0.904
64 56.8 1.3 36 1.979
128 54.6 2.57 31.6 4.30
256 68.0 4.21 40.8 6.69
512 63.2 8.55 40.2 13.68
1024 60.0 17.42 38.8 27.45
2048 92.8 22.55 59.0 35.25
4096 105.8 39.12 53.2 79.32
8192 171.8 47.95 92.6 91.22
16384 284.6 58.02 145.6 117.63
32768 481.8 68.06 218.4 150.73
65536 913.8 71.72 397.0 165.09
131072 1769.0 74.10 774.4 169.29
262144 3650.4 72.08 1647.8 162.46
524288 6944 .4 75.54 3041.0 173.34
1048576 13654.8 76.79 5834.4 179.73
2097152 27311.6 76.79 11596.0 180.87
4194304 54525.8 76.92 23040.8 182.06
8388608 108719.2 77.16 45723.8 183.47
16777216 217246.2 77.23 91310.6 183.74
33554432 435208.2 77.10 183107.0 183.25
67108864 869991.0 77.14 365705.4 183.51
134217728 1738817.2 77.19 727934.8 184.38
268435456 3478165.6 77.18 1456436.0 184.31
536870912 6950200.2 77.25 2900827.6 185.08
1073741824 13895425.2 77.27 5801329.0 185.09

Table 6.4: XDMA data buffer results.

91

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

Buffer size (B) Write Read
Time (us) \ BW (MB/s) \ Speedup || Time (us) \ BW (MB/s) \ Speedup

4 26.2 0.168 2.08 15.20 0.27 1.29
8 18.6 0.4 2.57 13.80 0.58 1.52
16 18.8 0.9 3.19 13.00 1.23 1.89
32 21.0 1.5 2.64 14.60 2.22 2.62
64 20.8 3.1 2.73 13.80 4.64 2.61
128 224 5.7 2.44 14.60 8.79 2.16
256 22.8 11.3 2.98 14.60 17.55 2.79
512 25.6 20.1 2.47 16.20 31.67 2.48
1024 33.0 31.1 1.82 18.40 55.69 2.11
2048 46.8 43.8 1.98 23.20 89.19 2.54
4096 73.0 56.1 1.45 33.40 123.01 1.59
8192 123.2 66.5 1.39 55.60 147.50 1.67
16384 224.8 72.9 1.27 98.80 166.01 1.47
32768 430.8 76.1 1.12 184.60 177.53 1.18
65536 840.8 77.9 1.09 354.80 184.74 1.12
131072 1662.0 78.9 1.06 696.20 188.29 1.11
262144 3306.8 79.3 1.10 1377.60 190.29 1.20
524288 6599.0 79.4 1.05 2749.60 190.68 1.11
1048576 13183.8 79.5 1.04 5506.80 190.42 1.06
2097152 26358.6 79.6 1.04 10993.40 190.77 1.05
4194304 52673.2 79.6 1.04 21924.20 191.31 1.05
8388608 105261.2 79.7 1.03 43878.80 191.18 1.04
16777216 210475.2 79.7 1.03 87531.60 191.68 1.04
33554432 421516.2 79.6 1.03 175418.20 191.29 1.04
67108864 843725.0 79.5 1.03 352837.50 190.20 1.04
134217728 1688657.8 79.5 1.03 701372.20 191.36 1.04
268435456 3378207.0 79.5 1.03 1400786.40 191.63 1.04

Table 6.5: QDMA data buffer results and QDMA speedup respect the XDMA time results.

Time

Figure 6.19 contains the plot with write and read required time data. The Y-axis has
time expressed in micro-seconds (us) and it is in logarithmic scale. In this plot, the lower
the time, the better.

Firstly, we can observe that reading is faster than writing, with both XDMA and
QDMA. This behavior was predictable because of the write and read implementation,
which was detailed in Section 4.6.2. Figure 4.18 and Figure 4.19 show the MSC diagram
for write and read transfers, respectively. At first sight, it is noticeable that write transfers
require one more message than read transfers. However, the key for the time difference
is that write transfers are composed of two memory accesses by the IP, one to the host
memory and another one to the FPGA memory, whereas for read transfers, the IP only
accesses the FPGA memory.

92

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

XDMA write XDMA read QDMA write —»— QDMAread —=—
1X108§|||||||||||||||\|||||\|

1x107 | E
1x10° |

100000

Time (us)

10000 |

1000 £

100 £

—
T R N Y N SO
X P PP AR GF~§F%§76#:§#;? 5
Buffer size (B)

Y e i i |
&

Figure 6.19: Plot comparing the time for write (purple) and read (orange) with XDMA
and QDMA. The lower, the better.

Moreover, it is observed that QDMA transfers take less time than XDMA ones. The
QDMA 1P is newer than the XDMA IP, which could be the reason behind QDMA being
faster. As IPs’ source code is private, it is not possible to evaluate the difference at RTL
level.

Bandwidth

Figure 6.20 contains the plot with write and read bandwidth data. The Y-axis has
bandwidth expressed in megabytes per second (MB/s). We can see that QDMA read
transfers are the ones with higher bandwidth, as expected from the previous time results
analysis.

Additionally, the distance between an XDMA transfer and a QDMA one, for both
write and read, is bigger during the part of the curve with a higher slope. This will soon
be analyzed in more detail.

All four lines end up stabilizing to a constant bandwidth, which shows that the
maximum bandwidth that the IP and driver can offer is reacheable. Table 6.6 contains
the maximum bandwidth range and at which buffer size it is reached, in other words,
the minimum buffer size needed to get the maximum bandwidth. It is observed that the
QDMA subsystem obtains a higher bandwidth earlier than the XDMA one.

93

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

XDMA write XDMA read QDMAwrite —+— QDMAread —=—
200 I B e S B N L T T T T T T T T T T T

a5 8—8—8—8—a 5 —&5—*f

180 - N

160 - N

140 |- -

120 - -

100 - N

80 -

Bandwidth (MB/s)

60 -

s . i 1 | | | | | | | | |

0 | | | | | | | |
R BN I NN ﬂ’*— i—'\,&{—m i—oa@l— SN S

Buffer size (B)

Figure 6.20: Plot comparing the bandwidth for write (purple) and read (orange) with
XDMA and QDMA. The higher, the better.

Transfer H Size (B) ‘ Bandwidth range (MB/s)
XDMA write 128K 74-77.3
QDMA write 64K 78-79.5
XDMA read 4M 182-185
QDMA read 128K 188-192

Table 6.6: Minimum buffer size to reach the maximum bandwidth range per transfer type
and PCle subsystem.

94

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

Latency

Figure 6.21 contains the plot with write and read time data for buffer sizes from 4 to
1024. Its objective is to study the latency of the PCle subsystems. The Y-axis has time
expressed in micro-seconds (us).

The plot shows that there is more time variability per transfer type with the XDMA
transfers, whereas QDMA transfers are more stable. Moreover, the XDMA read requires
more time than the QDMA write. That is curious since the global trend is that reads are
faster than writes, as has been observed previously. Hence, ti seems Xilinx has improved
the performance of small transfers in its newer PCle subsystem (QDMA).

XDMA write XDMA read QDMA write —»— QDMAread —=—
70 T T

60 =

50 N

Time (us)
I
o
T
1

&) "o 5y & i ,]’o,b 6)'\"' Ny

Buffer size (B)

Figure 6.21: Plot comparing the latency (expressed with time) for write (purple) and read
(orange) with XDMA and QDMA. The lower, the better.

Speedup

The speedup columns from Table 6.5, the third column of each transfer type, contain
the XDMA /QDMA speedup. It is computed by dividing the XDMA time results by the
QDMA time ones. We can observe that for write transfers the maximum speedup is
3.19x, at 16 B, and for read transfers, it is 2.79x, at 256 B. Moreover, the speedup is
higher with smaller buffer sizes, which could be because Xilinx had optimized the QDMA
IP for smaller buffer sizes.

95

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

Preliminary conclusions

The QDMA IP has a better performance than the XDMA one, with a minimum speedup
of 1.04x for bigger data transfers and up to 3.19x with smaller data transfers. In addition,
based on the latency analysis, it seems QDMA is improved especially for smaller buffer
sizes. Even though this is a supposition substantiated by the previous results because the
Xilinx IP code is privative.

Independently of the PCle subsystem, read transfers are faster than write transfers.

6.3.2 Boot time

The next and final performance test was booting Linux with the EPAC tool, to offload
the Linux image into the FPGA DDR4 memory. The time that takes the tool to offload
the OS binaries was measured with the time command. time runs the program specified
afterwards and when it finishes, time displays the real, user and system execution time
of the program ran [38].

The same image was used for both XDMA and QDMA bitstreams. The Linux bina-
ries were sent 10 times for each bitstream and since the variability is below 2% I ignored
the study of the errors of these measurements. The average time was computed, as can
be seen in Table 6.7.

As could be expected from the results of the previous performance tests, the QDMA
design needs less time to offload the Linux image. QDMA design is 13% faster than
XDMA design.

Although 1.13x of speedup may not seem a lot compared with the results of the
previous section, it is important keeping in mind that here the whole boot offloading
process is measured, whereas in the previous section, only the read and write times are
measured and not the whole program execution.

PCle subsystem H Average Offloading time (s) \ Speedup

XDMA 3.054 1.00x
QDMA 2.703 1.13x

Table 6.7: Average time needed to offload the Linux image.

6.3.3 Resource utilization

The first metric extracted from Vivado is resource utilization. It has been gathered after
the implementation and from all the available versions with a bitstream generated. This
metric is important because LUTs are the critical resource in the EPAC design and as EPI
developers add microarchitectural features, it is going to keep increasing and difficulting
closing timing. Therefore, if an important increase in LUTs was observed, it would imply
less room for future features and probably more problems closing timing.

96

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

The data was extracted from one execution because i) it takes a significant amount
of time and machine resources to generate each bitstream and i) I observed from my
previous experience with Vivado that the resource utilization variation from one run to
another is not significant (< 0.5%). Therefore, it was decided that it was not necessary
performing various runs from the same version, so no machine resources were wasted.
This reasoning also applies to the next Vivado metrics, as all of them do not present a
significant variance between runs with the same design.

The following resource utilization tables are similar to Vivado resource tables (ex-
plained in Section 3.4.4). The main difference between them is that the resource total
number and percentage of each module are both expressed one next to the other.

Before proceeding to the resource usage analysis, Table 6.8 contains the configuration
reference for each version.

Version \ Table reference
XDMA Table 6.9
QDMA Legacy + no rdy Table 6.10
QDMA Legacy + rdy Table 6.11
QDMA MSI Table 6.12
QDMA MSIx Table 6.13
QDMA MSIx + soft rst as rst | Table 6.14

Table 6.8: Table reference for each tested version.

Tables are composed by the resource usage of the whole BD (design 1) and by the
PCle subsystem IP and its submodules. Both PCle subsystems are formed by a PCle
IP (pciedc_ip) and an RTL wrapper (udma wrapper for XDMA and rtl wrapper for
QDMA). Moreover, the XDMA IP has a ram_top instance that QDMA does not have.

Name CLB LUTs CLB Registers BRAM URAM DSPs
Num | % Num | % Num | % Num [% Num [%
design_1 86159 | 6.61% || 116596 | 4.47% || 104.5 | 5.18% 0 0.00% 3 0.03%
— xdma_0 30401 | 2.33% || 36786 | 1.41% 50 | 2.48% 0 0.00% 0 0.00%
— pciedc_ip 2685 | 0.21% 7582 | 0.29% 22 1.09% 0 0.00% 0 0.00%
—— udma_wrapper || 27716 | 2.13% || 29203 | 1.12% 4 0.20% 0 0.00% 0 0.00%
—— ram_top 1 0.00% 1 0.00% 24 | 1.19% 0 0.00% 0 0.00%

Table 6.9: Resource utilization of the BD and XDMA IP in absolute and percentage

number.

97

Chapter 6. Replacement of XDMA with QDMA

6.3. Evaluation

Name CLB LUTs CLB Registers BRAM URAM DSPs
Num ‘ % Num ‘ % Num ‘ % Num ‘ % Num ‘ %
design_1 90670 | 6.95% || 121189 | 4.65% || 106.5 | 5.28%) 0.52% 3 0.03%
— qdma_0 35046 | 2.69% || 41340 | 1.59% 52 2.58% 5! 0.52% 0 0.00%
—— pciedc_ip 2694 | 0.21% 6139 | 0.24% 20 1.09% 0 0.00% 0 0.00%
— rtl_wrapper || 32353 | 2.48% || 35201 | 1.35% 30 1.49% 5) 0.52% 0 0.00%

Table 6.10: Resource utilization of the BD
absolute and percentage number.

and QDMA IP with legacy interrupts in

Name CLB LUTs CLB Registers BRAM URAM DSPs
Num ‘ % Num ‘ % Num ‘ % Num ‘ % Num ‘ %
design_1 91029 | 6.98% || 121188 | 4.65% || 106.5 | 5.28%) 0.52% 3 0.03%
— qdma_0 35102 | 2.69% || 41342 | 1.59% 52 2.58% 5! 0.52% 0 0.00%
—— pciedc_ip 2699 | 0.21% 6139 | 0.24% 22 1.09% 0 0.00% 0 0.00%
— rtl_wrapper || 32403 | 2.49% || 35203 | 1.35% 30 1.49% 5) 0.52% 0 0.00%

Table 6.11: Resource utilization of the BD and QDMA IP with legacy interrupts and
connected ready signals in absolute and percentage number.

Name CLB LUTs CLB Registers BRAM URAM DSPs
Num ‘ % Num ‘ % Num ‘ % Num ‘ % Num ‘ %
design_1 90866 | 6.97% || 121193 | 4.65% || 106.5 | 5.28% 5) 0.52% 3 0.03%
— qdma_0 35054 | 2.69% || 41336 | 1.59% 52 2.58% 5! 0.52% 0 0.00%
—— pciedc_ip 2691 | 0.21% 6139 | 0.24% 22 1.09% 0 0.00% 0 0.00%
— rtl_wrapper || 32363 | 2.48% || 35197 | 1.35% 30 1.49% 5) 0.52% 0 0.00%

Table 6.12: Resource utilization of the BD and QDMA IP with MSI interrupts in absolute
and percentage number.

Name CLB LUTs CLB Registers BRAM URAM DSPs
Num ‘ % Num ‘ % Num ‘ % Num ‘ % Num ‘ %
design_1 90965 | 6.98% || 121195 | 4.65% || 106.5 | 5.28% 5) 0.52% 3 0.03%
— qdma_0 35017 | 2.69% || 41344 | 1.59% 52 2.58% 5! 0.52% 0 0.00%
—— pciedc_ip 2690 | 0.21% 6139 | 0.24% 22 1.09% 0 0.00% 0 0.00%
— rtl_wrapper || 32328 | 2.48% || 35205 | 1.35% 30 1.49% 5) 0.52% 0 0.00%

Table 6.13: Resource utilization of the BD and QDMA IP with MSIx interrupts in absolute
and percentage number.

98

Chapter 6. Replacement of XDMA with QDMA

6.3. Evaluation

Name CLB LUTs CLB Registers BRAM URAM DSPs
Num ‘ % Num ‘ % Num ‘ % Num ‘ % Num ‘ %
design_1 91051 | 6.98% | 121171 | 4.65% || 106.5 | 5.28%) 0.52% 3 0.03%
— qdma_0 35045 | 2.69% || 41338 | 1.59% 52 2.58% 5! 0.52% 0 0.00%
—— pciedc_ip 2695 | 0.21% 6139 | 0.24% 22 1.09% 0 0.00% 0 0.00%
— rtl_wrapper || 32350 | 2.48% || 35199 | 1.35% 30 1.49% 5) 0.52% 0 0.00%

Table 6.14: Resource utilization of the BD and QDMA IP with MSIx interrupts and soft
reset, connected to PCle reset in absolute and percentage number.

Analyzing those tables, a comparison between XDMA and QDMA IPs is performed.
The fewer resources are required, the better, as it potentially leaves more room for the
implementation algorithms to close timing.

The first noticeable fact was that both QDMA and XDMA IP instances operate with-
out DSPs. The QDMA IP incorporates 5 URAMs, while XDMA has none. Furthermore,
QDMA design utilizes 52 BRAMs, slightly more than XDMA’s 50 BRAMs.

Regarding pciedc_ip, this IP uses fewer FFs with QDMA than with XDMA, 0.24%
and 0.29% respectively. The LUT usage is stable at 0.21% for both IPs.

The main difference between these 2 IPs is the wrapper. The XDMA one utilizes
2.13% LUTs and 1.12% FFs, while the QDMA wrapper uses 2.48% LUTs and 1.35%.

Comparing the different QDMA versions, the LUT difference is at most 0.01%. The
LUT usage range is from 32328 (MSI-X) to 32403 (Legacy with ready signals). The final
QDMA version, MSI-X with soft reset, is the second QDMA design with fewer LUTSs

utilization.

Therefore, XDMA IP requires fewer resources in general than QDMA. However,
keeping in mind that LUTs are the only critical FPGA resource, QDMA does not need
so much more LUTs than XDMA, as the difference is 0.35% LUTs.

LUT utilization of each version ordered by less to more usage:

XDMA < MSIx < MSIx + sft rst < Legacy + no rdy < Legacy + rdy < MSI

6.3.4 Synthesis and implementation time

The next Vivado metric is the time that Vivado needed to perform the synthesis and
implementation. This metric has been taken because the XDMA vanilla bitstream al-
ready requires a significant amount of time to be generated. Hence, a big increase in the
bitstream generation time would not be ideal.

Table 6.15 holds the synthesis, implementation and total time dedicated to generating
a bitstream. The table has these data for the XDMA vanilla version and each QDMA
version. As a reminder, the lower the time, the better.

99

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

PCle subsystem \ Version H Synth time \ Impl time \ Total time

XDMA Vanilla 0:44:18 3:44:39 4:28:57
Legacy + no rdy 0:53:03 2:36:37 3:29:40
Legacy + rdy 1:03:18 3:54:41 4:57:59

QDMA MSI 0:44:52 3:53:44 4:38:36
MSIx 1:00:15 3:55:31 4:55:46
MSIx + soft rst as rst 1:00:15 4:00:50 5:01:05

Table 6.15: Vivado synthesis, implementation and total time required by XDMA and each
QDMA version.

Comparing the XDMA and QDMA Legacy + no rdy designs, the QDMA total time
is lower than the XDMA. Although XDMA synthesis time is lower by 9 minutes, there
is a significant difference in the implementation time of 1 hour and 8 minutes. That is
probably because of the seed used in the Vivado heuristic algorithms. The seed choice
procedure is not known by us, but from previous experience, it could be design dependent.
That means that the seed could be computed by, for example, performing a hash over the
code, hence, a change in the code implies a change in the seed.

Regarding the QDMA designs, it can be noted that the fastest one is the first version,
legacy interrupts without the ready and soft reset signals connected. In the next version,
where the mentioned signals are connected to a block that generates a constant, the total
time increases by around 40% with respect to the previous design. It is probably due to
having to connect 3 signals to a fixed value, increasing the netlist and resources, which rises
the complexity in the synthesis and implementation phases. The other QDMA versions
have a similar implementation time, but the synthesis is faster for MSI interrupts.

The total time difference between the XDMA vanilla design and the final QDMA
one is around 32 minutes, an increase of 11.95% . It can be a consequence of the slight
resource usage increase, in other words, a raising in the design complexity is translated
into more synthesis and implementation time.

Total time of each version ordered by less to more time:

Legacy + no rdy < XDMA < MSI < MSIx < Legacy + rdy < MSIx + sft reset

6.3.5 WNS

The last Vivado metric is the WNS. It is key because currently closing EPAC timing can
be a problem with some configurations, so having a lower value would not be the ideal
case.

Table 6.16 shows the different WNS reported by Vivado. Just as a reminder, the
higher the value, the better, as it means that the tool has a higher scope of action in the
implementation phase.

100

Chapter 6. Replacement of XDMA with QDMA 6.3. Evaluation

PCle subsystem || Version | WNS (ns)

XDMA Vanilla 0.093
Legacy + no rdy 0.094
Legacy + rdy 0.074

QDMA MSI 0.058
MSIx 0.071
MSIx + soft rst as rst 0.098

Table 6.16: WNS of the XDMA vanilla design and each QDMA design version.

The best WNS is from the final QDMA version, which is even better than the XDMA
design by 5.38%. The worst WNS is from the MST design (0.058).

Regarding the QDMA legacy versions, WNS gets worse with the ready signals con-
nected, from 0.094 to 0.074.

Observing the QDMA MSI-X designs, WNS improves by having the soft reset con-
nected to the PCle reset. That could be because the placing and routing internal con-
straints of connecting signals to a constant could be strict, therefore having to connect 2
signals to a constant instead than 3, loosens up the constraints and helps closing timing.

WNS of each version ordered by more to less value:

MSIx sft reset > Legacy + no rdy > XDMA > Legacy + rdy > MSIx > MSI

101

Chapter 7

Conclusions

At the end of this thesis, it is important answering the research questions laid out in
Section 2.4.

Question 1. Does QDMA improve the performance over XDMA?

The response to the first question is yes, QDMA improves performance over XDMA.
This was observed analyzing the data buffer performance and the boot time, in Sec-
tion 6.3.1 and Section 6.3.2, respectively. QDMA has a better bandwidth and it seems to
be optimized specially for smaller packet sizes, which is the usual use case in our project.

Question 2. Which impact has QDMA over the design compared with XDMA? And
over the software tools?

Regarding the first part of the second question, the QDMA impact on the design
is that it is worth because QDMA improves the WNS although it occupies 0.36% more
LUTSs and requires more bitstream generation time. The main problem we are currently
facing in the SDV project is to close timing as the EPAC design uses a lot of LUTs and
achieving a positive WNS is becoming more difficult. Therefore, having a new design that
improves the WNS eases the timing issue we are facing.

With respect to the second part of the question, the change in the software tools used
is minimal and transparent to the user as they can continue using the boot and reprogram
tools. However, the QDMA driver load is more complex than the XDMA one and QDMA
needs configuring queues, which is a tedious process. These matters have been targeted
by creating a script that prepares the environment and by including the QDMA design
in the fpga-sdv partition, which ends up with a fully functional FPGA ready to be used
(Section 6.2.14).

Question 3. Is replacing XDMA with QDMA worth for the project?

Finally, the third question reply is yes, replacing XDMA with QDMA is beneficial
for the FPGAQSDYV project because it is better from both the performance and Vivado
perspective.

Apart from the answers to the research questions, this thesis has allowed me to learn
the whole process of understanding, changing, debugging and evaluating an IP. Moreover,
I have been able to make use of the theoretical driver concepts I had, learning the driver

102

Chapter 7. Conclusions 7.1. Future work

load and configuration procedure and the different Linux commands that allow you to
manage a driver. I have expanded my limited knowledge about DMA and learnt how it
can be applied with PCle, apart from getting to know RDMA, which I had not heard
before this thesis. Furthermore, it has been an opportunity to work with two state-of-
the-art FPGA boards commercially available: VCU128, which targets RTL development
as it provides more interfaces, and Alveo U55C, which aims data centers and offers less
interfaces. Working with them has given me an insight of the difficulties of managing
powerful FPGAs with large amount of resources, having the ability to make really complex
designs.

7.1 Future work

Having a functional and stable QDMA design opens the possibility of implemeting various
improvements on the FPGAQSDV design.

7.1.1 QDMA at Xilinx Alveo U55C

As was explained in Section 2.2, the MEEP cluster is going to be available by the end
of June 2023 and we will be able to upgrade the current U55C FPGA@QSDYV design from
using XDMA to QDMA. The experience obtained in this thesis with a known board and
environment will allow for a faster transition from XDMA to QDMA in a new FPGA
(Alveo U55C).

7.1.2 Ethernet over PCle

One opportunity is to apply the work in progress of Ethernet over PCle. It consists of
sending Ethernet packets via PCle, rather than through the Ethernet physical interface.
It is currently being developed by The OmpSs Programming Model group at BSC!, led by
Xavier Martorell. They have implemented two drivers: one for the host side and another
for the processor emulated in the FPGA.

The main prerequisite to be able to use their Ethernet over PCle implementation
is having QDMA as PCle subsystem. That is because the host driver uses the QDMA
queue system to send Ethernet packets to the FPGA.

Therefore, with the XDMA design the possibility of utilizing their work in SDV was
nonexistent and now it is the next objective.

7.1.3 Custom ILA

Another opportunity is implementing ourselves an ILA for the FPGAQSDYV design. Cur-
rently, the ILA size is limited by the timing issues that we encounter occasionally. At the

https://www.bsc.es/research-development/research-areas/programming-models/
the-ompss-programming-model/people

103

https://www.bsc.es/research-development/research-areas/programming-models/the-ompss-programming-model/people
https://www.bsc.es/research-development/research-areas/programming-models/the-ompss-programming-model/people

Chapter 7. Conclusions 7.1. Future work

moment, the ILA is used to debug and extract performance metrics from benchmarks and
scientific applications that are executed at FPGAQSDV. One request we usually receive
from the users who gather those metrics is being able to trace more execution time, and
that is determined by the ILA window.

By implementing a custom ILA we want to resolve that petition. The idea is to
collect the necessary information from signals or events and store it in either BRAMs
or HBM memory. Once that storage space is full, it would be flushed, written, to the
host memory via the QDMA. This could be implemented with XDMA, but as has been
seen, QDMA IP offers more bandwidth specially for smaller transfers, which is critical
for this idea. Bandwidth is key because it determines how long it takes to offload the
information, which affects the buffer size needed between the custom ILA storage and
the PCle subsystem to avoid losing information from the execution that might not be
stopped.

104

Acronyms

ALU Arithmetic Logic Unit.

ASIC Application-Specific Integrated Circuits.
AXI Advanced eXtensible Interface.
AXI-MM AXI Memory-Mapped.

AXI-ST AXI4-Stream.

BD Block Design.
BRAM Block RAM.

BSC Barcelona Supercomputing Center.
C2H card-to-host.

DMA Direct Memory Addressing.
DRC Design Rule Check.

DSP Digital Signal Processor.

EPAC European Processor Accelerator.

EPI European Processor Initiative.

FF Flip-Flop.
FPGA Field Programmable Gate Array.

GPIO General Purpose 1/0.

H2C host-to-card.
HBM High Memory Bandwidth.
HDL Hardware Description Language.

HPC High-Performance Computing.

105

Acronyms

Acronyms

ILA Integrated Logic Analyzer.
IO Input/Output.
IP Intellectual Property.

ISA Instruction Set Architecture.

LUT Look-Up Table.

MEEP MareNostrum Experimental Exascale Platform.

MM Memory-Mapped.
MSC Message Sequence Chart.

MSI Message Signal Interface.
MSI-X MSI eXtended.

NIC Network Interface Card.
OS Operating System.

PCI Peripheral Component Interconnect.
PCle Peripheral Component Interconnect Express.

PF Physical Function.

QDMA Queue DMA.
QP Queue Pair.

RC Requester Completion.
RDMA Remote Direct Memory Addressing.
RQ Requester reQuest.

RTL Register-Transfer Level.

SDV Software Development Vehicles.
SoC System-on-Chip.

SR-IOV Single Root I/O Virtualization.
URAM Ultra RAM.
VF Virtual Function.

106

Acronyms

Acronyms

VM Virtual Machine.

VPU Vector Processor Unit.

WNS Worst Negative Slack.

XDC Xilinx Design Constraints.

XDMA Xilinx DMA.

107

Appendices

108

© 00 N O U W N

N N NN N DNDNDDNDDNDIDLN = = = = = e e
© 00 N O U i W N K O © 0 O U W N = O

Appendix A

Dummy tests

This appendix contains the source code for the data tests, both word and buffer, and the

Makefile to compile them. I have written all the codes shown below.

A.1 Dummy word

Listing A.1 contains the source code from the data word test.

#include <inttypes.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>

int write_word (int card_fd, uint32_t data,

int retval = 0;

retval = lseek(card_fd, addr,

if (retval < 0) {

SEEK_SET) ;

perror ("Write lseek error");

return -1;

retval = write(card_fd, &data,

if (retval != size) {
perror ("Write error");
return -1;

return retval;

size);

109

int size,

uint64_t addr) {

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

80
81
82
83
84

Appendix A. Dummy tests

A.1. Dummy word

int read_word (int card_fd, uint32_t * data, int size,

}

int retval = 0;

retval = lseek(card_fd, addr, SEEK_SET);
if (retval < 0) {

perror ("Read lseek error");

return -1;

}
retval = read(card_fd, data, size);
printf ("Read bytes: %d\n", retval);
if (retval != size) {

perror ("Read error");

return -1;
}

return retval;

int main (int argc, char *argv[]) {

if (argec !'= 2) {
printf ("Usage: ./dummy_word <xdma | gdma>\n");
return -1;

}

/ *
% 5k k %k 5k 3k %k 5k 3k %k 5k %k %k % 5k %k % 5k 5k % 5k 5k %k 5k 5k %k 5% 3k %k % k %k % %k %k % 5k *k % >k k * *
* Open devices *
K 3K K 3K ok ok oK oK oK oK ok oK oK K K K K K K K K oK ok ok oK oK oK oK ok ok ok K K K K K K K K K K K K
*/
char *device_h2c;
char *device_c2h;
if (strcmp(argv([1], "xdma") == 0) {
printf ("Stating dummy test for XDMA:\n");

// XDMA h2c and c2h channel O

device_h2c = "/dev/xdmaO_h2c_0";
device_c2h = "/dev/xdmaO_c2h_O0O";

}

else if (strcmp(argv[1], "qgdma") == 0) {
printf ("Stating dummy test for QDMA:\n");
// QDMA h2c and c2h channel O
device_h2c = "/dev/qdma08000-MM-0";
device_c2h = "/dev/qdma08000-MM-0";

}

else {
printf ("Non of the available devices specified:
return 1;

}

int fpga_write_fd = open(device_h2c, O_RDWR);
int fpga_read_fd = open(device_c2h, O_RDWR);

110

uint64_t addr) {

xdma or qdmal\n")

Appendix A. Dummy tests A.1. Dummy word

85

86 if (fpga_write_fd < 0) {

87 printf ("H2C channel device could not be opened\n");

88 perror ("Opening H2C device");

89 exit (-1);

90 }

91 if (fpga_read_fd < 0) A{

92 printf ("C2H channel device could not be opened\n");

93 perror ("Opening C2H device");

94 exit (-1);

95 }

96

97 /%

98 K ok K ok ok K ok ok K ok ok K oK oK oK oK K oK oK K oK oK K ok ok K ok ok K oK ok K oK K oK oK K oK oK K K K K

99 * Writing a word *

100 ok K K ok K KOk K oK kK ok R K oK K K oK K K oK K K K K KOk K ok kK oK KK K K K K K KOk K

101 */

102 uint32_t test_word = OxABCDEF12;

103 int size = sizeof (uint32_t);

104

105 int written_bytes;

106 /* uint64_t axi_addr = 0x44A20008; */

107 uint64_t axi_addr = 0x800000000000;

108

109 fprintf (stdout, "Writing data Ox%x to address Ox%lx\n", test_word,
axi_addr);

110 printf ("Writing into FPGA\n");

111

112 written_bytes = write_word(fpga_write_fd, test_word, size, axi_addr)

113

114 printf ("Written bytes: %d\n", written_bytes);

115

116 if (written_bytes < 0)

117 goto exit;

118

119 /*

120 ok K K ok K Kk K oK KK oK koK oK K K oK K K oK K K K K K kK ok kK oK K oK K K K K KOk K

121 * Reading a word *

122 K ok K ok ok K ok ok K ok ok K oK K oK oK K oK oK K oK ok K oK ok K ok ok K oK ok K oK K oK oK K K oK K K K K

123 */

124

125 uint64_t read_bytes;

126 uint32_t read_test_word;

127 printf ("Reading from FPGA\n");

128 read_bytes = read_word(fpga_read_fd, &read_test_word, size, axi_addr
)

129

130 printf ("Read bytes: %1ld\n", read_bytes);

131 if (read_bytes < 1)

132 goto exit;

133

134

135 int ret_val = O0;

136 if (read_test_word != test_word) {

111

137

138
139
140
141

142
143
144
145
146
147
148
149
150

© 00 N O Ut W N

e e e e e
S UL W N = O

17
18
19
20
21
22
23
24
25
26
27
28

Appendix A. Dummy tests

A.2. Dummy buffer

}

else

exit:

printf ("Read word %x is DIFFERENT than the test word %x \n",
read_test_word, test_word);
ret_val = -1;

printf ("Read word %x is EQUAL than the test word %x \n",
read_test_word, test_word);

close(fpga_write_£fd);
close(fpga_read_£fd);
return ret_val;

Listing A.1: Data word test source code written in C.

A.2 Dummy buffer

Listing A.

2 shows the source code from the data buffer test.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define

<inttypes.h>
<sys/types.h>
<unistd.h>
<stdlib.h>
<stdint.h>
<stdio.h>
<errmno.h>
<fcntl.h>
<sys/time.h>
<time.h>
<string.h>

RW_MAX_SIZE 0x7f£f££f000
int write_buffer (int card_fd, uint32_t *data, uint64_t size, uint64_t
addr) {
int64_t ret_val = O0;
uint64_t count = 0;
uint32_t *buffer = data;
uint64_t offset = addr;

while (count < size) {

uint64_t bytes = size - count;

if (bytes > RW_MAX_SIZE)
bytes = RW_MAX_SIZE;
lseek (card_f£fd, SEEK_SET) ;

ret_val = offset,

112

29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81

Appendix A. Dummy tests A.2. Dummy buffer

if (ret_val == -1) {
perror ("Write lseek error");
return -1;

ret_val = write(card_fd, buffer, bytes);
if (ret_val != bytes) {
fprintf (stderr, "Write Ox%lx @ Ox%1lx failed %1ld.\n",
offset, ret_val);
perror ("Write file");
return -1;

count += ret_val;
buffer += bytes;
offset += bytes;

return count;

}

bytes,

int read_buffer (int card_fd, uint32_t * data, uint64_t size, uint64_t

addr) {

int64_t ret_val = O0;
uint64_t count = O0;
uint32_t *buffer = data;
uint64_t offset = addr;

while (count < size) {
uint64_t bytes = size - count;

if (bytes > RW_MAX_SIZE)
bytes = RW_MAX_SIZE;

ret_val = lseek(card_fd, offset, SEEK_SET);
if (ret_val == -1) {

perror ("Read lseek error");

return -1;

ret_val = read(card_fd, buffer, bytes);
if (ret_val != bytes) {
fprintf (stderr, "Read 0x%1lx @ Ox%lx failed %1d.\n",
offset, ret_val);
perror ("Read file");
return -1;

count += ret_val,;
buffer += bytes;
offset += bytes;

return count;

113

bytes,

82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

Appendix A. Dummy tests A.2. Dummy buffer

int main (int argc, char xargv[]) {

if (argc !'= 3) {
printf ("Usage: ./dummy_buffer <xdma | gqdma> <buffer_elements>\n"
)i
return -1;
}
/ *
K ok K ok ok K oK ok K oK ok K oK ok K oK oK K oK K oK ok K oK ok K oK ok K oK ok K oK K K oK K oK oK K K K K
* Open devices *
5k 5k >k %k 5k 5k >k %k 3k 5k >k %k % 5k >k >k % 5 5 %k %k % 5 5%k % % 5 > >k % % 5 % % % 5% % % % % % % %
*/

char *device_h2c;
char *device_c2h;
if (strcmp(argv[1], "xdma") == 0) {
printf ("Stating dummy test for XDMA:\n");

// XDMA h2c and c2h channel O
device_h2c "/dev/xdmaO_h2c_0";
device_c2h "/dev/xdmaO_c2h_0";

}

else if (strcmp(argv([1], "qgdma") == 0) {
printf ("Stating dummy test for QDMA:\n");
// QDMA h2c and c2h channel O
device_h2c = "/dev/qdma08000-MM-0";
device_c2h = "/dev/qdma08000-MM-0";

}

else {
printf ("Non of the available devices specified: xdma or gdmal\n")
return 1;

}

int fpga_write_fd = open(device_h2c, O0_RDWR);
int fpga_read_fd = open(device_c2h, O0_RDWR);

if (fpga_write_fd < 0) {
printf ("H2C channel device could not be opened\n");
perror ("Opening H2C device");
exit (-1);

}

if (fpga_read_fd < 0) {
printf ("C2H channel device could not be opened\n");
perror ("Opening C2H device");
exit (-1);

}

int ret_val = 0;
struct timeval t0O, t1;
uint64_t time_write, time_read;

VE:

>k 3k >k 3k %k %k Xk 3k X %k X %k X %k X % 5 %k 5 >k 3 >k 3 %k >k %k >k %k % % %k % % % % % % % % % % % Xk

114

Appendix A. Dummy tests A.2. Dummy buffer

136 * Allocate buffers *

137 sk 5k >k %k 5k 5k >k k %k 5k >k %k % 5k >k >k %k 3k 5 >k % % 5 > %k %k % > >k %k % 5% % % % % % % % % % % %

138 */

139 uint64_t num_elem = strtoull (argv[2], NULL, 10);

140 int32_t *test_buffer, *xtest_buffer_read;

141

142 uint64_t size = num_elem * sizeof (int32_t);

143

144 printf ("Allocating and initializing test_buffer of %lu elements, %lu
bytes\n", num_elem, size);

145

146 /* posix_memalign((void x*%*)&buffer, 4096 /*alignment *1/ , size +
4096) ; =x/

147 test_buffer = malloc(size);

148 test_buffer_read = malloc(size);

149

150 for (int i = 0; i < num_elem; i++) {

151 test_buffer[i] = rand();

152 }

153 printf ("test %x, test read %x\n", test_buffer[0], test_buffer_read
[01);

154

155 / *

156 ok ok ok ok ok ok ok K ok sk ok ok ok ok ok ok ok ko ok ok ok ok ok ok K sk ok ok ok ok K K ok % ok ok ok

157 * Writing a buffer *

158 5 5k sk % %k 5k sk sk %k 5k >k sk %k %k >k >k %k 5k 5k %k sk %k %k %k >k %k %k > >k %k %k 5% % >k %k % % %k %k %k *k *k %

159 */

160 int64_t written_bytes;

161 /* uint64_t axi_addr = 0x44A20008; x*/

162 uint64_t axi_addr = 0x800000000000;

163

164 fprintf (stdout, "Writing %lu bytes to address O0x%lx\n", size,
axi_addr) ;

165 printf ("Writing into FPGA\n");

166

167 gettimeofday (&t0, NULL) ;

168 written_bytes = write_buffer (fpga_write_fd, test_buffer, size,
axi_addr) ;

169 gettimeofday (&tl, NULL);

170

171 time_write = (tl.tv_sec-t0.tv_sec)*1000000 + tl.tv_usec-t0.tv_usec;

172

173 printf ("Written bytes: %1ld\n", written_bytes);

174

175 if (written_bytes < 0) {

176 ret_val = -1;

177 goto exit;

178 }

179

180 / *

181 % o ok ok ok ok ok ok Kk sk ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok % sk ok ok ok ok K K K % ok ok ok

182 * Reading a buffer *

184 */

185

186 int64_t read_bytes;

115

187
188
189

190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

© 00 N O Uk W N

Appendix A. Dummy tests A.2. Dummy buffer

printf ("Reading from FPGA\n");

gettimeofday (&t0, NULL);

read_bytes = read_buffer (fpga_read_fd, test_buffer_read, size,
axi_addr);

gettimeofday (&tl1, NULL);

time_read = (tl1.tv_sec-t0.tv_sec)*1000000 + tl1.tv_usec-t0.tv_usec;

printf ("Read bytes: %1ld\n", read_bytes);
if (read_bytes < 0) {

ret_val = -1;

goto exit;

}
int unmatched_words = 0;
for (int i = 0; i < num_elem; i++) {
/* printf ("test_buffer [%d] = %x; test_buffer_read[%d] = %x\n", i
., test_buffer[i], i, test_buffer_read[i]); =x/
if (test_buffer[i] != test_buffer_read[i]) {
unmatched_words++;
printf ("In position %d -> test_buffer = %x !=
test_buffer_read = %x\n", i, test_buffer[il,
test_buffer_read[i]);
}
}

printf ("Total unmatched word %d\n", unmatched_words);

printf ("\nTime_write %lu us\n", time_write);
printf ("\nTime_read %lu us\n", time_read);

ret_val = unmatched_words 7 -1 : O;

exit:
close(fpga_write_£fd);
close(fpga_read_£fd);
free(test_buffer);
free(test_buffer_read) ;
return ret_val;

Listing A.2: Dummy buffer test source code written in C.

Listing A.3 contains the Bash script to execute the data buffer test with different
buffer sizes and extract the time results.

#!/bin/bash

echo "buf_elems, buf_size(B), run, write_time(us), read_time(us)"
max_elems=$((2 << 29))

for j in {0..29%}

do
buf_elems=$((2 **x $j))

116

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 00 N O U W N

e e e
S U W N = O

Appendix A. Dummy tests A.3. Makefile

for i in {1..5}

do
tmp=°./dummy_buffer_test $buf_elems ¢
./dummy_buffer_test $buf_elems
if [$? -ne 0]; then
echo "Fail"
continue
fi
buf_size=$(($buf_elems * 4))
write_time=$(awk ’/Time_write/ {print $2}’ <<< $tmp)
read_time=$(awk ’/Time_read/ {print $2}’ <<< $tmp)
echo $buf_elems, $buf_size, $i, $write_time, $read_time
done

done

Listing A.3: Bash script to execute and extract in CSV form the time results from the

data buffer tests.

A.3 Makefile

Listing A.4 contains the Makefile written to compile the two data tests.

CC 7= gcc

CFLAGS+="-D_FILE_OFFSET_BITS=64 -D_GNU_SOURCE -D_LARGE_FILE_SOURCE"

.PHONY: all clean

all: data_word_test data_buffer_test

data_word_test: data_word.c

$(CcC) $(CFLAGS) -o $@ $<

data_buffer_test: data_buffer.c
$(CC) $(CFLAGS) -o $@ $<

clean:
rm -rf data_test data_word_test data_buffer_test

Listing A.4: Makefile to compile the 2 data tests.

117

Bibliography

1]

2]

[10]

[11]

European Processor Initiative. European processor iniciative - epi. https://www.
european-processor-initiative.eu/, 2023. Accessed on May 24, 2023. 2.1

European Processor Initiative. Accelerator processor stream. https://www.
european-processor-initiative.eu/accelerator/, 2023. Accessed on May 24,

2023. 2.1.1

Inc. Xilinx. Virtex ultrascale+ hbm vcul28 fpga evaluation kit. https://www.
xilinx.com/products/boards-and-kits/vcul28.html, 2023. Accessed on March
22,2023. 2.1.1, 3.1, 3.3

Barcelona Supercomputer Center. Meep: Marenostrum experimental ex-
ascale platform. https://www.bsc.es/research-and-development/projects/

meep-marenostrum-experimental-exascale-platform, 2023. Accessed on June
14, 2023. 2.2

Inc. Xilinx. What is an fpga? https://www.xilinx.com/products/
silicon-devices/fpga/what-is-an-fpga.html. Accessed on March 22, 2023. 3.1

Inc. Xilinx. Lut. https://www.xilinx.com/htmldocs/xi1inx2017_4/sdaccel_
doc/ye01504034293627 .html, 2018. Accessed on March 25, 2023. 3.1.2, 3.2a

Inc. Xilinx. Flip flop. https://www.xilinx.com/htmldocs/xil1inx2017_4/
sdaccel_doc/ksgl1504034293914 .html, 2018. Accessed on March 25, 2023. 3.1.2,
3.2b

Inc. Xilinx. Dsp48 block. https://www.xilinx.com/htmldocs/xil1inx2017_4/
sdaccel_doc/uwal504034294196.html, 2018. Accessed on March 25, 2023. 3.1.2,
3.2¢

Inc. Xilinx. Versal ACAP Memory Resources Architecture Manual (AM007), 2020.
3.1.2, 3.2d, 3.2¢

Alchitry. Fpga timing. https://alchitry.com/fpga-timing-verilog. Accessed
on March 26, 2023. 3.1.3

Inc. Xilinx. UltraFast Design Methodology Guide for FPGAs and SoCs (UG949),
2022. 3.1.3, 3.14

118

https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/accelerator/
https://www.xilinx.com/products/boards-and-kits/vcu128.html
https://www.xilinx.com/products/boards-and-kits/vcu128.html
https://www.bsc.es/research-and-development/projects/meep-marenostrum-experimental-exascale-platform
https://www.bsc.es/research-and-development/projects/meep-marenostrum-experimental-exascale-platform
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/yeo1504034293627.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/yeo1504034293627.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/ksg1504034293914.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/ksg1504034293914.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/uwa1504034294196.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/uwa1504034294196.html
https://alchitry.com/fpga-timing-verilog

Bibliography Bibliography

[12] NandLand. What is setup and hold time in an fpga? https://nandland.com/
lesson-12-setup-and-hold-time/. Accessed on June 11, 2023. 3.1.3

[13] Inc. Xilinx. VCU128 Evaluation Board HW-U1-VCU128, 2018. 3.5, 6.2.5, 6.9a, 6.9b

[14] Inc. Xilinx. Intellectual property. https://www.xilinx.com/products/
intellectual-property.html. Accessed on March 26, 2023. 3.1.5

[15] Filippo Mantovani, Pablo Vizcaino, Fabio Banchelli, Marta Garcia-Gasulla, Roger
Ferrer, Giorgos Ieronymakis, Nikos Dimou, Vassilis Papaefstathiou, and Jesus
Labarta. Software development vehicles to enable extended and early co-design:
a risc-v and hpc case of study. arXiv preprint arXiv:2306.01797, 2023. 3.2

[16] SchedMD. Slurm. https://slurm.schedmd.com/overview.html, 2023. Accessed
on May 23, 2023. 3.2

[17] Inc. Xilinx. Boards. https://www.xilinx.com/products/boards-and-kits.html.
Accessed on March 22, 2023. 3.3

[18] Inc. Xilinx. LogiCORE IP Product Guide Integrated Logic Analyzer v6.1 (PG172),
2016. 3.3.1

[19] Inc. Xilinx. Vivado Design Suite User Guide (UG910), 2021. 3.4.1, 3.4.1

[20] Inc. Xilinx. Vivado Design Suite User Guide, Using Constraints (UG903), 2022.
3.4.2

[21] Inc. Xilinx. Vivado Design Suite Properties Reference Guide (UG912), 2022. 3.4.2

[22] Ravi Budruk Tom Shanley, Don Anderson. PCI Express System Architecture. Mind-
Share, Inc, 2003. 4.1, 4.1.1, 4.1.2

[23] Alessandro Rubini Jonathan Corbet, Greg Kroah-Hartman. Linuz Device Drivers,
9rd Edition. O'Reilly, 2005. 4.1.1, 4.2, 4.2

[24] Intel. Msi-x. https://www.intel.com/content/www/us/en/docs/programmable/
683268/21-1-4-0-0/msi-x.html. Accessed on April 06, 2023. 4.1.1

[25] VMware. Single root i/o virtualization (sr-iov). https://docs.vmware.
com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/
GUID-CC021803-30EA-444D-BCBE-618EOD836B9F .html, 2019. Accessed on

May 22, 2023. 4.1.2

[26) ARM Limited. Amba axi protocol specification. Protocol Specification ARM IHI
0022, ARM Limited, Cambridge, England, March 2023. Accessed: 14 April. 4.4, 4.3,
4.5

[27) ARM Limited. Amba4 axid-stream protocol specification. Protocol Specification
ARM THI 0051A, ARM Limited, Cambridge, England, 2010. Accessed: 14 April. 4.3

[28] Inc. Xilinx. DMA /Bridge Subsystem for PCI Express Product Guide (PG195), 2022.
4.4,4.6,4.2,4.9,4.10, 4.3

119

https://nandland.com/lesson-12-setup-and-hold-time/
https://nandland.com/lesson-12-setup-and-hold-time/
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://slurm.schedmd.com/overview.html
https://www.xilinx.com/products/boards-and-kits.html
https://www.intel.com/content/www/us/en/docs/programmable/683268/21-1-4-0-0/msi-x.html
https://www.intel.com/content/www/us/en/docs/programmable/683268/21-1-4-0-0/msi-x.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html

Bibliography Bibliography

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

Renato J. Recio, Paul R. Culley, Dave Garcia, Bernard Metzler, and Jeff Hilland.
A Remote Direct Memory Access Protocol Specification. RFC 5040, October 2007.
4.5,4.5.1

Cisco. Infiniband concepts. https://www.cisco.com/c/en/us/td/docs/server_
nw_virtual/2-10-0_release/element_manager/user_guide/appA.html, 2007.
Accessed on April 11, 2023. 4.5.2

Inc. Xilinx. QDMA Subsystem for PCI Express Product Guide (PG302), 2022. 4.6,
415,4.6.1,4.6.1,46.1,4.6.1, 4.6.1, 4.16, 4.6.2, 4.6.4, 6.1

Inc. Xilinx. Xilinx qdma linux driver. https://xilinx.github.io/dma_ip_
drivers/master/QDMA/linux-kernel/html/index.html, 2023. Accessed on May
10, 2023. 4.6.4

Krste Asanovié¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and
Andrew Waterman. The rocket chip generator. Technical Report UCB/EECS-2016-
17, EECS Department, University of California, Berkeley, Apr 2016. 5.1.1

Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonicbhoom: The
3rd generation berkeley out-of-order machine. May 2020. 5.1.1

Antonio Pullini, Davide Rossi, Igor Loi, Giuseppe Tagliavini, and Luca Benini.
Mr.wolf: An energy-precision scalable parallel ultra low power soc for iot edge pro-
cessing. [EEE Journal of Solid-State Circuits, 54(7):1970-1981, 2019. 5.1.3

F. Zaruba and L. Benini. The cost of application-class processing: Energy and perfor-
mance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(11):2629—
2640, Nov 2019. 5.1.4

Inc. Xilinx. UltraScale+ Devices Integrated Block for PCI Ezxpress Product Guide
(PG213), 2022. 6.2.5

David MacKenzie. TIME(1). Man page. Section 1. 6.3.2

120

https://www.cisco.com/c/en/us/td/docs/server_nw_virtual/2-10-0_release/element_manager/user_guide/appA.html
https://www.cisco.com/c/en/us/td/docs/server_nw_virtual/2-10-0_release/element_manager/user_guide/appA.html
https://xilinx.github.io/dma_ip_drivers/master/QDMA/linux-kernel/html/index.html
https://xilinx.github.io/dma_ip_drivers/master/QDMA/linux-kernel/html/index.html

	1 Introduction
	1.1 Master Thesis outline

	2 Motivation and objectives
	2.1 EPI
	2.1.1 EPAC

	2.2 MEEP cluster
	2.3 Motivation
	2.4 Research questions

	3 Technical background
	3.1 FPGA
	3.1.1 Bitstream
	3.1.2 Resources
	3.1.3 Timing
	3.1.4 Pins
	3.1.5 IPs

	3.2 SDV insfrastructure
	3.3 VCU128
	3.3.1 Usage in FPGA@SDV

	3.4 Xilinx Software Environment
	3.4.1 Vivado Design Suite
	3.4.2 Constraints
	3.4.3 Bitstream generation
	3.4.4 Resource utilization

	4 PCIe and DMA
	4.1 PCIe architecture
	4.1.1 Interrupts
	4.1.2 Functions

	4.2 DMA protocol
	4.2.1 DMA gather/scatter transfers
	4.2.2 DMA support in PCIe

	4.3 AXI protocol
	4.4 XDMA Xilinx IP
	4.4.1 Components
	4.4.2 Operations
	4.4.3 Port description
	4.4.4 Driver

	4.5 RDMA
	4.5.1 Concepts
	4.5.2 Queues
	4.5.3 RDMA Write operation
	4.5.4 RDMA Read operation

	4.6 QDMA Xilinx IP
	4.6.1 Architecture
	4.6.2 Operations
	4.6.3 Port description
	4.6.4 Driver

	5 State-of-the-art
	5.1 RISC-V implementations in FPGA
	5.1.1 Rocket Chip
	5.1.2 Nios V processor
	5.1.3 PULP platform
	5.1.4 Ariane

	5.2 Initial state of SDV design
	5.3 Comparison

	6 Replacement of XDMA with QDMA
	6.1 Example design
	6.2 Replacement in SDV design
	6.2.1 Change of IPs
	6.2.2 Constraints
	6.2.3 Bitstream generation failure
	6.2.4 Pinout problem
	6.2.5 Pinout assignment
	6.2.6 New pinout problem
	6.2.7 Driver and tools compilation
	6.2.8 Data word test
	6.2.9 Loading the driver
	6.2.10 Queue configuration
	6.2.11 MSI interruptions
	6.2.12 MSIx interruptions
	6.2.13 Adapt SDV tools
	6.2.14 Process automation

	6.3 Evaluation
	6.3.1 Data burst performance
	6.3.2 Boot time
	6.3.3 Resource utilization
	6.3.4 Synthesis and implementation time
	6.3.5 WNS

	7 Conclusions
	7.1 Future work
	7.1.1 QDMA at Xilinx Alveo U55C
	7.1.2 Ethernet over PCIe
	7.1.3 Custom ILA

	Acronyms
	Appendices
	Appendix A Dummy tests
	A.1 Dummy word
	A.2 Dummy buffer
	A.3 Makefile

