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Diabetes is a chronic condition that is characterized by high blood glucose levels and can cause damage to 
multiple organs over time. Continuous monitoring of glucose levels is essential for both diabetic and non-
diabetic individuals. There have been major developments in glucose monitoring technology over the past 
decade, which have been driven by research and industry efforts. Despite these significant advancements, the 
area of glucose biosensors still faces significant challenges. This paper presents a comprehensive summary of 
the latest glucose monitoring technologies, including invasive, minimally invasive, and non-invasive methods. 
Subsequently, we bring together the electronic components, wireless communication technologies, and energy 
harvesting opportunities, along with the limitations and challenges associated with current glucose monitoring 
solutions. This is followed by highlighting the potential integration of health records generated by continuous 
glucose monitors and artificial intelligence (AI) techniques to define precise diabetes management protocols. This 
integration achieves accurate results with constrained prediction horizons employing a time series of continuous 
glucose readings. The paper emphasizes the need for further advancements in glucose monitoring technology to 
improve diabetes management and address the critical need in clinical practice for improved glucose monitoring 
technologies with translational implications.
1. Introduction

The International Diabetes Federation (IDF) estimates that 537 mil-
lion people worldwide suffer from diabetes [1]. It was reported that by 
2045, 700 million people are anticipated to be dietetics worldwide [2]. 
Diabetes poses significant health risks due to its high prevalence, di-
verse complications, and absence of a straightforward cure [3]. Over the 
past two decades, diabetes has surged into the top ten leading causes of 
mortality, marking a staggering 70% increase since 2000. It is directly 
responsible for 1.5 million deaths annually and is linked to the highest 
increase in male fatalities among the top 10 [4]. Conventional medical 
opinion classifies the consequences of diabetes into micro-vascular and 
macro-vascular, including retino/nephro/neuro-pathy, coronary heart 
disease, cerebro-vascular disease, and peripheral vascular disease as 
major causes of death and disability [5]. Additionally, consistent ev-
idence from large-scale population research shows that diabetes is 
associated with an increased risk of developing cancer and a higher 
likelihood of dying from the disease [6]. As a result, there have been 
numerous efforts put into studying diabetes from a variety of perspec-
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tives [7]. Moreover, diabetes in pregnancy poses significant risks to 
both mother and baby, leading to complications such as preeclampsia, 
preterm delivery, and neonatal issues [8]. Achieving euglycemia during 
pregnancy is crucial to mitigate these risks, as poor glycemic control 
increases the likelihood of adverse outcomes.

There are two major forms of diabetes: type 1 and type 2. Type 
1 diabetes (T1D) is caused by the pancreatic insufficient insulin pro-
duction [9]. Contrarily, type 2 diabetes (T2D) is mostly brought on by 
sufferers’ increasing insulin resistance and decreased insulin responsive-
ness, which results in inefficient utilization of insulin [3].

Self-monitoring of blood glucose (SMBG), involving the periodic 
measurement of blood sugar levels, has been a conventional method 
employed by for managing diabetes. Diabetics have continued to de-
pend on SMBG, which relies on a variety of enzyme-electrode strips. 
However, self-testing glucose strips require a disturbing and invasive 
blood sample from fingertips, which lowers patient satisfaction and pre-
vents them from providing frequent measurements. Moreover, the fre-
quent occurrence of blood draws makes it more challenging for patients’ 
injuries to recover in a reasonable timeframe. In the SMBG scheme, the 
Available online 25 January 2024
1110-0168/© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail addresses: mmansour@nu.edu.eg (M. Mansour), mdarweesh@nu.edu.eg (M

https://doi.org/10.1016/j.aej.2024.01.021
Received 21 June 2023; Received in revised form 24 December 2023; Accepted 4 Ja
of Engineering, Alexandria University. This is an open access article under the

. Saeed Darweesh), asoltan@nu.edu.eg (A. Soltan).

nuary 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aej
mailto:mmansour@nu.edu.eg
mailto:mdarweesh@nu.edu.eg
mailto:asoltan@nu.edu.eg
https://doi.org/10.1016/j.aej.2024.01.021
https://doi.org/10.1016/j.aej.2024.01.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2024.01.021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alexandria Engineering Journal 89 (2024) 224–243M. Mansour, M. Saeed Darweesh and A. Soltan

Fig. 1. Conceptual diagram which shows different research areas for wearable devices which are mainly sensing technology, energy management, communications 
and data analysis.
logbooks were used to manually document glucose readings, insulin 
dosages, nutrition, and activity [10].

After the SMBG era, lasted from 1980s to 2000s, the medication for 
diabetes has seen a radical transformation thanks to continuous glucose 
monitoring (CGM). In the past twenty years, CGM has proved its abil-
ity to introduce a revolutionary solution for diabetes management. It 
has paved the way to precision monitoring for diabetics [11]. In CGM, 
relevant metabolic indicators can be continually monitored to enable 
prompt symptoms identification and preventative interventions. Over 
the years, scientists have shown that the glucose content of several 
biofluids correlates with blood glucose levels. They have been shown 
that sweat, urine, interstitial fluid (ISF), tears, breath, and saliva of 
these methods exhibit linear correlations, which is highly beneficial. 
This correlation makes it easier to develop simpler, safer, more conve-
nient, and less infectious CGM devices. These biofluids have potential 
application as viable analytes for non-invasive glucose monitoring [12]. 
The integration of non-invasive monitoring devices and patient-oriented 
protocols will enhance the viability of such systems, making them more 
resilient to adoption in both medical and commercial domains. [13].

Development of an accurate, safe, miniaturized, long-lasting, and 
patient-friendly CGM is not an easy process. It requires the integration 
of several aspects of science to address many challenges (Fig. 1). The 
miniaturization and slim design requirements that are needed in wear-
able technology impose strict limitations on the power supply, which in 
turn affects the precision and longevity of the device. The integration 
of energy harvesting techniques with low-power utilization and high 
energy efficiency has the potential to considerably enhance the oper-
ational lifespan of wearable devices. [14]. Some substrates that have 
been shown to be effective in implementing these form factors include 
removable tattoos, soft polymers, and hybrid structures integrating flex-
ible printed circuit boards (PCBs) with conventional ICs.

A reliable source of energy is crucial to the functionality of many 
CGM devices. They need to be small and lightweight to be practical 
for extended periods of use. The majority of CGM devices, however, 
need cumbersome batteries to function. This conventional approach 
inevitably increases the size and weight of gadgets, reducing their porta-
bility and autonomy. Energy harvesters are a novel and promising idea 
for powering independent CGM devices. Therefore, there is an increas-
ing need for cutting-edge energy supply systems that can provide reli-
able electricity without requiring regular recharging, as is the case with 
conventional batteries or devices.

With the advent of CGM devices, many methods have been de-
veloped for predicting blood glucose concentrations and their conse-
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quences [15]. Such methods allow the patient to take extra precautions, 
such as eating carbohydrates or pausing insulin, before the onset of hy-
poglycemia. Moreover, they enable the installation of smart alarms that 
would facilitate the creation of analyses to predict the impacts of the 
patient’s lifestyle or therapeutic decisions. Physiological models were 
the norm until recently when data-based methods and hybrid models 
(which included features of both) entered the scene [16]. AI-based med-
ical advancements are quickly turning into clinically effective solutions. 
Deep neural networks (DNN) can handle massive amounts of informa-
tion from wearable, cellphones, and other monitoring devices in several 
medicine-related fields [17].

The several facets and applications of CGM have been reviewed and 
addressed in several publications. The outcomes of these studies are 
relatively insufficient and scattered. Table 1 illustrates a comparison 
between previous studies about the CGM system including this study. 
The comparison takes into account several aspects such as sensing prin-
ciples, energy harvesting, wireless communication, wireless communi-
cation, diabetes management schemes, and commercial systems.

Herein, we explore the emerging trends achieved in developing 
wearable and continuous monitoring glucose sensors including:

1. The various glucose sensing mechanisms and the key elements of 
these sensors.

2. Sensor energy storage options describing the possibility of self-
powered sensors utilizing state-of-the-art energy harvesting and 
power optimization schemes.

3. The essential electronic components for the signal path from the 
glucose sensor to the smartphone passing by conditioning circuits, 
microcontroller, power source, and its possible energy harvesting 
schemes.

4. The low-power wireless communication protocols enable the trans-
mission of collected measurements in a secure and efficient way.

5. How CGM could be integrated with AI to enhance a wide range 
of diabetes care systems, from diabetes diagnosis, complications 
prevention, and glycemic control and treatment process including 
applications, equipment, and platforms that assist patients, doctors, 
and healthcare organizations.

6. A survey for the commercially announced CGM systems for both 
corporates and start-ups comparing their performance and different 
features.

2. Wearable biosensors role in bio-molecules sensing

Biosensors are analytical devices that integrate biological compo-

nents with physicochemical sensors to detect specific biological ana-
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Table 1

Comparing this review with relevant CGM work, based on various CGM aspects.

Paper Title Sensing 
principles

Electronic 
components

Wireless 
communication

Energy 
harvesting

Diabetes 
management

Commercial 
systems

Challenges 
and future 
perspective

[18] Electrochemical glucose sensors 
in diabetes management: an 
updated review (2010–2020)

(electro-
chemical)

[19] Wearable non-invasive 
epidermal glucose sensors: A 
review

[20] Artificial Intelligence for 
Diabetes Management and 
Decision Support: Literature 
Review

[21] Comprehensive Review on 
Wearable Sweat-Glucose Sensors 
for Continuous Glucose 
Monitoring

(Sweat 
focused)

[22] Continuous glucose monitoring 
systems - Current status and 
future perspectives of the 
flagship technologies in 
biosensor research

[23] An Overview of Wearable and 
Implantable Electrochemical 
Glucose Sensors

[24] Glucose biosensors in clinical 
practice: principles, limits and 
perspectives of currently used 
devices

[25] Non-Invasive Blood Glucose 
Monitoring Technology: A 
Review

[26] Review—Glucose Monitoring 
Sensors: History, Principle, and 
Challenges

[27] Smartphone-Based 
Electrochemical Systems for 
Glucose Monitoring in Biofluids: 
A Review

[28] Subcutaneous amperometric 
biosensor for continuous glucose 
monitoring in diabetes

(ISF 
focused)

[29] Transforming Diabetes Care 
Through Artificial Intelligence: 
The Future Is Here

This study Wearable Devices for Glucose 
Monitoring: A Review of 
State-of-the-Art Technologies 
and Emerging Trends

: Aspect is covered to the core of the paper.
: Aspect is sufficiently covered in the paper.

: Aspect is shallow-covered in the paper.

: Aspect does not exist in the paper.
lytes. Wearable biomolecules sensing has made it possible to measure 
and diagnose diseases and monitor patients continuously by providing 
data on biomarkers in biofluids, such as electrolytes (Na+, K+, Ca+2, 
and Cl), metabolites (glucose, uric acid, and lactate), pH, vitamins, hor-
mones (cortisol, for example), and immuno-detections (cytokines) [30]. 
Inspired by Organs-on-Chip technology, wearable biosensors leverage 
microenvironment regulation and tissue-specific functionalities to mon-
itor bio-molecules in real-time [31]. Wearable bioanalytical innovations 
have the potential to be a viable substitute for cumbersome and costly 
bio-samples analysis, since they enable the non-invasive or minimally 
invasive assessment of molecular biomarkers in various biofluids. Al-
226

though blood is the most well-understood sample for diagnostic mea-
sures, non-invasive or minimally-invasive wearable sensor systems find 
it appealing to target other biological fluids such urine, breath, tears, 
sweat, saliva, and interstitial fluids (ISF) since they are easier to access. 
The advantages of wearable biomarker sensing platforms are found in 
their cost-effectiveness, compact nature, adaptability, flexibility, dedi-
cation to provide continuous tracking, instant response, reduced sample 
size requirements, and greater sensitivity to low levels of biomarkers as 
compared to traditional laboratory methods. Biosensors play a crucial 
role in early-stage detection of biomolecules associated with diseases, 
such as interleukin-10 for heart diseases and human papilloma virus 

[32].
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Fig. 2. Core Components of Biosensors. This schematic diagram depicts the fundamental components common to biosensors utilized across various applications: 
Recognition Element: Typically, a biomolecule, enzyme, antibody, or nucleic acid sequence that interacts specifically with the target analyte, initiating the sensing 
process. Transducer: Converts the biological response generated by the recognition element into measurable signals (electrical, optical, or other), enabling quantita-
tive analysis. Interface Layer: Facilitates and enhances the interaction between the recognition element and the target analyte, crucial for achieving specificity and 
sensitivity in detection. Signal Processing Electronics: Components responsible for interpreting and processing the transduced signal, transforming it into quantifiable 
analytical data. Created with Biorender.com.
In the realm of flexible electronic devices, significant progress 
has been made in both fabrication techniques and in the use of 
micro/nanostructured assets [33]. These advancements have demon-
strated considerable promise in various feasible domains, such as bio-
logical monitoring, smart automation, smart displays, and energy scav-
enging.

Biosensors can be classified into 5 main categories. Enzyme-based 
biosensors, also known as enzymatic biosensors, are designed to utilize 
enzymes to detect specific biomolecules, such as glucose, ethanol, and 
cholesterol. On the other hand, tissue-based biosensors use living tissues 
to detect the presence of certain biomolecules or toxins. Enzymatic glu-
cose biosensors commonly employ enzymes like glucose oxidase (GOx) 
or glucose dehydrogenase (GDH) to catalyze glucose oxidation reac-
tions. This catalysis generates detectable signals proportional to the 
glucose concentration, providing high specificity and sensitivity in glu-
cose detection. On contrast, non-enzymatic biosensors operate without 
specific enzymes and instead use nanomaterials such as metal nanopar-
ticles, carbon-based materials, or conducting polymers to facilitate glu-
cose oxidation [34]. These sensors offer advantages like improved sta-
bility, reduced interference, and prolonged sensor lifespan compared to 
enzymatic counterparts.

Another type of biosensors is immunosensors which can detect the 
interaction between antibodies and antigens, making them useful for 
detecting specific biomolecules related to diseases or pathogens. Ionic 
liquids (ILs) are increasingly used in immunosensors due to their low 
volatility, thermal and chemical stability. Increasing the sensitivity of 
immunosensors is a key use for ILs. In terms of the benefits of employing 
adapted ILs include its consistency, reuse capability, and stability [35].

DNA biosensors are designed to detect specific DNA sequences, mak-
ing them valuable for genetic testing and disease diagnosis.

Biosensors employ various technologies, including enzymatic, non-
enzymatic, and nanotechnology-based approaches to measure glucose 
levels in bio-fluids. Beyond glucose monitoring, biosensors exhibit ver-
satility in detecting various biomolecules. By modifying the sensor’s 
biological recognition element, such as enzymes or antibodies, biosen-
sors can detect diverse analytes like lactate, cholesterol, ketones, and 
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various metabolites. This multifunctionality opens avenues for wearable 
devices to expand their scope beyond glucose monitoring, potentially 
enabling comprehensive health monitoring in real-time.

As shown in Fig. 2, the biosensing process begins with the selec-
tion of a specific recognition element tailored to the target biomolecule. 
This element can be enzymes, antibodies, aptamers, or other biologi-
cal molecules that interact selectively with the analyte of interest. In 
glucose monitoring, enzymes like glucose oxidase or glucose dehydro-
genase are commonly used as the recognition element.

Immobilization is a critical step where the selected recognition el-
ement is firmly anchored or attached to the surface of the transducer. 
This fixation is essential to retain the biological activity and specificity 
of the recognition element while allowing for efficient interaction with 
the target biomolecule [36]. Immobilization involves employing a sens-
ing material possessing high electrical characteristics that ensures dura-
bility, biocompatibility, accessibility to the analytic agent, and a sub-
stantial contact area [37]. To stabilize enzymes, various approaches are 
employed, including physical adsorption based on van der Waals forces, 
covalent bonding, entrapment in a matrix, deposition on nanostruc-
tures, or ionic interactions. A variety of enzymes, including polyphenol 
oxidase, peroxidase, amine oxidase, and tyrosinase, may be used in 
the development of this kind of biosensors. The potential to combine 
sensitivity, selectivity, and rapidity in affordable biological detection 
methods has led to a variety of research on electrochemical devices and 
biosensors during the last several decades. Among the immobilization 
techniques, a novel approach was devised to immobilize hemoglobin 
efficiently using a nanocomposite of poly(styrene-alternative-maleic an-
hydride) bonded to 3-aminobenzoic acid (PSMA-g-3ABA) and multi-
walled carbon nanotubes (MWCNTs). This technique included the cre-
ation of PSMA-g-3ABA/MWCNTs nanocomposite [38]. The nanocom-
posite film created a conducive milieu for the preservation of the biolog-
ical activity and natural structure of hemoglobin. Using biocompatible 
materials such as PFu@(Fe3O4), poly(styrene-alternative-maleic acid) 
(PSMAC), or poly(p-phenylenediamine) PpPDA@(Fe3O4), immobiliza-
tion of biomolecules such as hemoglobin can be achieved to construct 
nanocomposite/glassy carbon electrode [39,40]. In this case, the im-
mobilized hemoglobin can exhibit preserved bioactivity and retain its 

natural conformation [41,42].
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Fig. 3. Taxonomy of glucose sensing technologies.

Fig. 4. Glucose concentration ranges in Bio-fluids for healthy individuals (mg/dL). Blood Plasma: Typically maintains glucose concentrations within a range of 
approximately 88.2 mg/dL to 124.2 mg/dL in fasting conditions. Postprandial levels can transiently rise up to 180 mg/dL. Interstitial Fluid (ISF): Shows glucose 
levels that closely mirror blood glucose concentrations, with minor delays and variations. Normally ranges from 70.2 mg/dL to 118.8 mg/dL, similar to blood glucose 
under fasting conditions. Urine: Displays glucose concentrations ranging between approximately 50 mg/dL to 100 mg/dL in healthy individuals. Saliva: Presents 
glucose levels typically reflecting a lower concentration compared to blood plasma, ranging between 4.14 mg/dL to 6.84 mg/dL in healthy individuals. Tears: 
Demonstrates glucose concentrations lower than blood plasma, spanning approximately 0.9 mg/dL to 9 mg/dL in healthy subjects. Sweat: Shows glucose levels in 
a range between 1.08 mg/dL to 1.98 mg/dL in healthy individuals, though concentrations can vary depending on factors such as physical activity and hydration 
status. These reference ranges are indicative of the normal glucose levels found in different bodily fluids among individuals without underlying health conditions. 
Variations outside these ranges might indicate potential health concerns or metabolic abnormalities, warranting further clinical evaluation and monitoring.
3. Glucose sensing principles

Historically, Clark and Lyons opened the door for the first glucose 
sensor by developing an amperometric electrode for the enzymatic de-
tection of blood glucose utilizing glucose oxidase (GOx or GOD) in 
1962 [43,44]. A series of improvements for Clark’s electrochemical 
sensor followed the invention, including employing non-physiological 
electron receptors as redox media rather than oxygen to engage in glu-
cose catalysis passing by applying direct electron transfer (DET) through 
the enzyme itself instead of the mediator, and finally, the usage of na-
noenzymes which offered superior catalytic properties, flexibility, and 
long-term stability [45].

Non-invasive monitoring technologies have emerged as a promising 
area for study in the field of blood glucose monitoring. In the following 
sub-sections, a discussion, and classification for non-invasive glucose 
monitoring are illustrated (see Fig. 3).

3.1. Classifications of glucose biosensors

There are several classifications for glucose sensors based on differ-
ent criteria. The primary way to categorize glucose sensors is according 
to the degree of invasiveness of the sensing devices, dividing them into 
three categories: invasive, minimally invasive, and non-invasive. An-
other common practice is to classify blood glucose sensing as either “in 
vivo” or “in vitro” measurements. Extraction of tissue fluid from hu-
mans is performed in an in vitro setting to evaluate glucose levels, with 
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the aim of providing an approximation of glucose levels in whole blood. 
On the other hand, the in-vivo measuring approach involves applying 
the device to a living subject and taking readings.

Collecting blood samples for direct access to the electrochemical 
sensor is traditionally achieved using Finger-prick, which is painful 
and infectious [46]. This method can be avoided partially or totally 
thanks to the correlation between the concentration of glucose in blood 
and the other reachable bio-fluids like ISF [47], urine [48], tear [49], 
saliva [50] and sweat [51] (Fig. 4). Moreover, many studies showed 
that the blood itself has several properties correlated to the glucose 
concentration, such as the blood refractive index, light scattering co-
efficient, bioimpedance, dielectric constant, loss tangent, permittivity, 
and conductivity allowing non-invasive glucose measurements [52–56]. 
Furthermore, the sensing could be based on glucose intrinsic properties 
like Raman shift, absorption coefficient, specific optical rotation, and 
complex permittivity changes across the signal path. The permittivity 
of a sample can change significantly as the concentration of one of its 
substances varies [57].

3.2. Interstitial fluid (ISF)

Glucose sensing based on the ISF is the most mature CGM technol-
ogy. The glucose concentration in the ISF is highly correlated with the 
concentration in blood because of its ability to exchange nutrients with 
blood through capillaries by diffusion [58]. In ISF-based systems, sub-
cutaneous ISF extraction is a crucial process [59]. The ability to extract 

epidermal ISF in a less invasive manner has been made possible by a 
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Fig. 5. Common configuration of amperometric microneedle sensors. The sen-
sor’s architecture includes an array of microelectrodes that facilitate sensitive 
and selective measurements of glucose levels. These microelectrodes are coated 
with specific enzyme coatings or materials that facilitate the oxidation or re-
duction of glucose molecules, generating electrical signals proportional to the 
glucose concentration. The system typically involves a working electrode (WE), 
a reference electrode (RE), and sometimes an auxiliary (counter) electrode (CE). 
The working electrode plays a pivotal role in catalyzing the electrochemical 
reactions involving glucose. The reference electrode helps maintain a stable 
electrochemical potential, enabling accurate measurements. The auxiliary elec-
trode, if present, aids in stabilizing the current during measurements. Created 
with Biorender.com.

number of approaches such as microneedles (MNs) [60] and reverse 
iontophoresis (RI) [61].

Originally, MN has been used for painless drugs and vaccine inser-
tion. Instead of insertion, it was used for extraction of the ISF as it is 
considered a rich resource of biomarkers [62]. Its diameter ranges be-
tween 200 and 350 μm, about 2 to 3 times the human hair diameter 
[63], and less than 1 mm in height. Microneedles can penetrate the 
outermost layer of the skin, known as the stratum corneum, without 
causing annoyance. This forms tiny pores, that can be utilized for car-
rying medications and vaccinations throughout the body. Microneedles 
have also been used in the fabrication of biosensors for diagnostic of 
glucose and other bio-analytes, in addition to their use in medication 
administration [64]. They can be employed to collect ISF and blood, 
based on the extent of skin penetration. In addition, they can serve as 
electrodes when placed on the surface of the skin. In the MN array, 
needles are grouped and employed to serve as working electrode (WE), 
counter electrode (CE), or reference electrode (RE). Then it is implanted 
in the skin to reach the ISF as shown in Fig. 5. MN devices can be in-
jected by applying a patch with fingertip force or using an external 
applicator. MN-based biosensors can be integrated into a wristband-
style device (Fig. 8 f, g).

RI has been used in a way that is now significantly better thanks 
to significant progress in flexible semiconductors and materials engi-
neering. By applying a light current to the surface of skin tissue, RI can 
collect ISF, then glucose can be detected by an enzyme electrochemical 
sensor as shown in Fig. 6. The two primary elements in the ISF during 
typical physiological situations are Na+ and Cl−. The epidermis itself 
will increase Na+ transportation making Na+ the predominant carrier 
due to the negative charges contained on the surface of the skin. When 
a suitable voltage is supplied to the electrode to generate a mild cur-
rent Cl− and Na+ move towards the skin’s outermost layer [65]. The 
majority of the electroosmotic flow throughout RI travels down pre-
ferred, minimal resistance channels that are predominantly connected 
to hair follicles. Nevertheless, the skin thickness physiology, quantity, 
and location of follicles change significantly between people or between 
various areas of the skin, which has a significant impact on the consis-
tency of ISF reached using the RI approach. Furthermore, the limited 
size as well as the low number of follicles channels may restrict the 
flow of glucose collection. Besides the skin irritation that could happen 
in case of long-term exposure to RI, difficulties with RI-based CGM de-
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vices result from interference from unwanted glucose streams such as 
Alexandria Engineering Journal 89 (2024) 224–243

Fig. 6. Extracting Interstitial Fluid (ISF) using the Reverse Iontophoresis (RI) 
Approach. The diagram illustrates electrodes placed on the skin’s surface. The 
electrodes are utilized to apply a controlled electrical current, facilitating the 
movement of charged molecules, such as glucose, across the skin barrier. The RI 
approach exploits the principles of electrochemistry and ion transport to induce 
the flow of ISF towards the skin’s surface. This extracted ISF contains analytes 
like glucose, enabling non-invasive or minimally invasive glucose monitoring 
without the need for traditional blood sampling. Created with Biorender.com.

sweat throughout activity and glucose accumulation on the skin, and 
uneven ISF extraction effectiveness. RI was used for the first time in 
wearable devices in 2012 by [66]. Bandodkar et al. [67] suggested a 
patched blood glucose sensor in the form of a tattoo that extracted ISF 
via RI. Li et al. [68] employed both RI and iontophoresis for CGM and 
insulin injection respectively creating a closed-loop system. As shown 
in (Fig. 8e), a transdermal device for glucose monitoring based on ISF 
extraction with a differential structure to remove the passive sweat ef-
fect was proposed by Pu et al. [59]. Chang et al. [69] published a fully 
integrated CGM watch that used RI to extract ISF.

3.3. Sweat

Sweat is a highly appealing bio-fluid for non-invasive, continuous 
monitoring systems due to its unique benefits. Besides the presence of 
the majority of sampling points on the outer surface of the body, contin-
uous availability, simplicity of allocation, and ease of collection devices, 
it also combines physiologically significant electrolytes and bio-active 
components. Stick-on sensors applied on the skin need to be very re-
silient since the epidermis is constantly stretched and bent during the 
daily workout [70]. There has been a dramatic increase in research and 
development efforts focused on sweat-based sensors and systems for 
monitoring health to aid in the treatment of diabetic patients [71]. In 
the study of, [72] a flexible on-skin sweat-sensing solution that incor-
porates an elastic battery and an electrochromic panel is presented. It 
can function without connecting with any other components, the main 
components of these devices are effective stretchy Ag2O-Zn batteries, 10 
electrochromic displays, and a tiny MCU. The CGM device was based on 
an enzymatic or potentiostatic electrochemical biosensor. The results 
of the analysis can be seen instantaneously, directly on the intercon-
nected electrochromic panel. Except for the microprocessor, everything 
is made using screen printing using elastomeric or silver inks to cre-
ate the individual components. The sensors are able to detect a number 
of metabolites and electrolytes in perspiration, including Na+, pH, glu-
cose, and lactate.

3.4. Optical coherent tomography

Optical Coherence Tomography (OCT) is an imaging technology that 
uses light waves to capture changes in the refractive index generating 
high-resolution, cross-sectional images of tissues and structures in the 
body. As it offers a high signal-to-noise ratio (SNR) and resolution, re-

cently, researchers have been exploring the potential of achieving an 
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Fig. 7. The basic concept of OCT scanning for CGM. The figure depicts a simpli-
fied representation of an OCT system emitting a beam of near-infrared light into 
the skin. The emitted light interacts with tissue components, and the reflected 
light signals are captured and processed to generate depth-resolved images of 
the tissue microstructure.

OCT-based CGM to obtain varying glucose concentrations in a reliable 
way [73,74].

The basic principle behind OCT for CGM is that glucose absorbs light 
in a characteristic way, which changes the refractive index of the sur-
rounding tissue. By measuring the changes in the refractive index, it is 
possible to estimate glucose concentration in the surrounding tissue. As 
shown in Fig. 7, this is done by comparing the reflected light waves 
from the tissue to a reference beam, which produces an interference 
pattern that can be analyzed to extract the glucose concentration [75]. 
Despite its promising features, OCT for CGM necessitates refined preci-
sion due to challenges like motion artifacts and temperature influences, 
which might affect its accuracy and reliability.

Compared to other CGM technologies, OCT offers several advantages 
as it is completely non-invasive and does not require any needles or 
skin pricks, which makes it more comfortable for patients. On the other 
hand, it still has many constraints like the need for high-precision imag-
ing and signal processing, which can be affected by various factors such 
as motion artifacts, temperature, and changes in tissue properties [76]. 
OCT for CGM is still in the early stages of development, and more re-
search is needed to optimize the technology and validate its accuracy 
and reliability.

3.5. Bioimpedance

The impedance of biomolecules to a current flow is measured us-
ing a technique called bioimpedance [77]. Bioimpedance is affected 
by the insulating, dielectric, or conducting properties of the bio-
logical medium. The relationship between glucose fluctuations and 
bioimpedance has been subjected to research. Bioimpedance variation 
in blood volume was found to be negatively correlated with glucose 
content [78]. Bioimpedance has been shown to be a stable and accurate 
method for estimating blood glucose with an optimal frequency range 
below 40 kHz [79]. A skin bioimpedance-based CGM device typically 
consists of sensors, measurement circuitry, and analytical algorithms 
(see Fig. 8 c). In comparison to existing noninvasive monitoring meth-
ods, the approach is more straightforward and cost-effective for pro-
longed continuous monitoring [80]. However, for applied purposes, the 
skin’s surface is easily influenced by everyday physiological processes 
or the surroundings. The thickness and moisture level of the tissue must 
be considered in the electrode’s design and the analytical algorithm as 
well. It should be emphasized that variations in skin’s dielectric char-
acteristics can result from a variety of variables, maybe not changes in 
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4. CGM electronic components

In this section, the signal path from the glucose sensor to the smart-
phone is described (Fig. 9). The description for each block is discussed 
in the following subsections.

4.1. Analog front end (AFE)

A wide range of glucose sensors is considered to be amperometric 
sensors, which generate a small current in the range of 𝜇A proportional 
to the variation in glucose concentration. This analog signal requires an 
interface that has a high transimpedance gain to convert its nature to 
a voltammetric signal. Then, the signal is amplified, filtered and con-
verted to a digital signal.

AFE serves as a critical component responsible for conditioning and 
digitizing signals in Continuous Glucose Monitoring systems. An op-
timal AFE must fulfill multiple criteria: I) providing a wide passband 
and dynamic range capable of capturing fluctuations in glucose-related 
signals, II) integrating low power consumption without compromising 
performance, III) accommodating both high and low impedance elec-
trodes, and IV) ensuring high precision in glucose measurements.

For instance, the AD5940, developed by Analog Devices, represents 
a robust off-the-shelf AFE solution. Its analog-to-digital converter (ADC) 
boasts impressive specifications, featuring a 16-bit resolution, 800 kSPS 
(thousands of samples per second), and a versatile multichannel SAR 
(Successive Approximation Register) architecture. This ADC incorpo-
rates essential elements such as input buffers, an integrated anti-aliasing 
filter, and a configurable boost amplifier (PGA). Additionally, its in-
put multiplexer (mux) allows configuration for various measurement 
inputs, including internal channels, external current, and voltage in-
puts, providing adaptability for diverse sensor interfaces.

Another noteworthy AFE option is the AFE91000, particularly suit-
able for electrochemical glucose sensors. Engineered for micro-power 
applications, the AFE91000 operates at an overall current draw below 
10 μA. Notably, power consumption optimization techniques, such as 
deactivating the TIA (Trans-Impedance Amplifier) amplifier and utiliz-
ing a built-in switch to bridge the reference electrode to the working 
electrode, contribute to substantial power reduction.

Single AFEs solutions may be used in replacement of the more 
conventional, bulky electronics. The vast majority of AFEs come as a 
standalone set for several sensor varieties. For instance, Analog Devices 
Inc.’s AD5940 is designed specifically to be utilized in electrochemical 
sensors. Multiplexing other kinds of sensors, such as optical and elec-
trochemical sensors, onto a single AFE presents challenges that are not 
present with this design [88]. These days’ CGM systems need AFEs that 
can do more than one thing and have various sensor inputs and out-
puts. The compact potentiostat, via adapting LMP91000, provide POC 
testing features, low-power monitoring, and high sensitivity [89].

4.2. Microcontroller

A microcontroller (MCU), classified as a tiny computer, is the brain 
behind most CGMs. The presence of connectivity is made possible with 
it. It minimizes several electrical components that are required for ex-
ecuting diverse operations on a compact chip [90]. It is widely used 
in CGM due to its ease of programming, low cost, compact size, and 
compatibility with biosensors. Some MCUs are designed to handle com-
plicated wireless protocol stacks enabling the CGM device to schedule 
measurements to be transmitted every few minutes or even seconds. 
Engineers may customize the MCU to the specific requirements of their 
projects thanks to its adaptability.

The MCU is responsible for handling the bulk of the device’s oper-
ations, including data collection and transmission. As a result, it uses 
a considerable amount of the device’s overall battery power. Power-
saving micro-controllers may significantly cut down on the amount of 

energy a device requires to operate. The ultra-low power MCU that can 
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Fig. 8. Illustrative Schemes for continuous glucose monitoring from Literature. (A) A stretchable sweat-sweat system for glucose and lactate colorimetric monitoring. 
Reprinted under the open access license from [81], Copyright 2022 Springer Nature. (B) An in vivo salivary glucose monitor. Reprinted with permission from 
[82], Copyright 2020 American Chemical Society. (C) A bioimpedance spectroscopy based device that could be implanted in the body for glucose level monitoring. 
Reprinted under the open access license from [83], Copyright 2023 Springer Nature. (D) A temperature modulated semiconducting transition for glucose level 
detection in exhaled breath. Reprinted with license from [84], Copyrights 2020 Royal Society of Chemistry. (E) A transdermal device for glucose monitoring based 
on ISF extraction with a differential structure to remove the passive sweat effect. Reprinted with permission from [59], Copyright 2021 AAAS. (F) A colorimetric 
microneedle patch for sensing glucose, lactate, cholesterol and pH levels in ISF. Reprinted with permission from [85], Copyright 2022 Elsevier. (G) A wearable 
biosensor based on microneedles array for glucose/lactate level detection in ISF. Reprinted under the open access license from [86], Copyrights 2022 Springer 
Nature. (H) The NovioSense Glucose Sensor, worn behind the inferior conjunctival fornix, continually measures basal tear fluid glucose levels. Reprinted under the 
open access license from [87], Copyrights 2022 Springer Nature.
function in sleep modes is an excellent option. Data on glucose levels 
are sent from the AFE to the MCU by a serial communication link (often 
UART, SPI, or I2C) in the device. I2C is more desirable since the major-
ity of AFEs support it for its simplicity and the necessity of only 2 wires 
for communication.

The CYW20736S is a system-in-package (SiP) module that is highly 
integrated and very small in size, making it ideal for use with BLE. As 
the CYW20736S SiP already has a BLE antenna, clock (at 24 MHz), and 
512 Kb EEPROM built-in, just a few more components are required to 
make it into a fully functional independent BLE device.

4.3. Energy source

A dependable and consistent power source is crucial for ensuring the 
sustained operation of CGM devices. Presently, batteries stand as the 
most reliable energy source due to their encapsulation potential in bio-
compatible materials, enhancing device safety. However, batteries face 
challenges such as limited lifespan, reduced effectiveness, health haz-
ards, and environmental unfriendliness. For addressing these concerns, 
energy harvesting from the patient’s body and ambient surroundings 
emerges as a promising alternative, aimed at maximizing patient satis-
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faction while mitigating these drawbacks [91].
Active research into harnessing atmospheric energy for wearable 
and implantable devices has been ongoing for several years. Never-
theless, commercial self-powered CGM devices are not yet available. 
The harvested power, in most cases, fails to independently supply the 
device, necessitating integrated energy storage systems due to the in-
consistency and instability of these energy sources. Eliminating periodic 
battery replacement procedures remains an aspirational goal for CGM 
devices powered solely through energy harvesting. These modifications 
seek to expand upon the challenges posed by traditional power sources 
and highlight ongoing efforts toward exploring alternative energy solu-
tions in the context of Continuous Glucose Monitoring devices.

Energy harvesting often makes use of human-centric forms of energy 
like movement and thermal radiation. Fig. 10 provides a taxonomy of 
the many energy-harvesting methods that have the potential to be uti-
lized in CGMs. An individual’s internal temperature differs from that of 
their surroundings, which may be used by thermoelectric energy gener-
ators (TEGs) to harvest energy [92,93]. Furthermore, photovoltaic (PV) 
cells have shown promise in capturing the radiant heat that the human 
body emits. Energy may also be derived from the vibrations produced 
by the human body during activities like hiking, jogging, and even 
heartbeat. Electrostatic, triboelectric, electromagnetic (EM), and piezo-

electric methods were used to successfully convert these vibrations to 
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Fig. 9. Main components of CGM systems. The illustration showcases the key elements involved in the process of monitoring and analyzing glucose levels in real-time 
such as the glucose sensor, analog front end (AFE), microcontroller (MCU), wireless communication module/antenna, and data processing unit.
electric power [94]. Environmental forms of energy including sunlight 
and radio frequency (RF) waves, as well as infrared, have also shown 
great potential [95]. Ecocentric energy sources are typically dependent 
on their availability and need extra storage in order to ensure uninter-
rupted functioning. In order to achieve more reliable energy solutions, 
energy harvesting methods may integrate sources from the human body 
and the environment to constitute what are known as hybrid energy 
harvesters.

Various options, such as rechargeable batteries, supercapacitors, and 
capacitors, come with distinct advantages and limitations, impacting 
both longevity and form factor considerations. An exemplar application 
involving wireless power transfer for continuous blood glucose monitors 
emphasizes the need to optimize start-up energy requirements for effi-
cient wireless power transfer cycles, thus reducing the wireless energy 
harvesting duration. Moreover, emerging trends toward hybrid/dual-
source energy harvesting in specific applications showcase a strategic 
combination of solar cell, RF signal harvesting, and battery usage to 
extend battery life while minimizing environmental impact.

It was suggested by Zhao et al. [96] that a self-powered, fully in-
tegrated wristwatch can be used to monitor glucose levels in sweat 
in real-time. The smartwatch’s components included electrochemical 
glucose sensors, bespoke circuitry, screen modules, elastic solar cells, 
and battery packs. Hence, the harvested energy is enough for power-
ing all these components. Materials with piezoelectric properties may 
be mechanically deformed repeatedly to induce piezoelectricity. Dur-
ing physical activity, mechanical energy may be captured and used to 
power glucose monitors worn by the user. A self-powered glucose sensor 
was described by Yu et al. [97], which makes use of the piezoelectrical 
phenomenon utilizing a triboelectric nanogenerator (TENG) nanowire. 
Whenever a compressive strain of 0.79 percent is applied to the biosen-
sor, the piezoelectrical impact improves the device’s efficiency in all 
forms, leading to a greater than 200 percent raise in the yield signal’s 
intensity as well as a doubling and a tripling of the sensing resolution 
and sensitivity.

Recent advancements in continuous glucose monitoring propose a 
groundbreaking method that taps into the body’s own analytes for 
energy. Bandodkar et al. [98] introduced an approach where bodily 
substances generate electrical signals directly proportional to their con-
centration levels, eliminating the need for conventional power sources 
like batteries. By utilizing this energy-harvesting technique, the need 
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for batteries is eliminated, enabling compact, cost-effective glucose and 
other biomarkers monitoring. This method allows for compact and cost-
effective modules capable of real-time data transmission using near-
field communication (NFC) technology (discussed in the next section). 
This holds a promising future for self-sustaining, non-invasive monitor-
ing devices with implications beyond glucose monitoring, potentially 
revolutionizing health monitoring paradigms.

5. Low power wireless communication

Wireless communication is a crucial part of CGM. It enables the 
transmission of collected measurements to the data centers for further 
complicated real-time analysis with high-performance hardware. Wire-
less CGM systems have the merit of separating the devices from the 
electrodes, which enhances wearability in CGM systems where the sen-
sor is meant to be put directly on or close to the skin. On the other 
hand, the excessive use of energy throughout transmitting data is a ma-
jor contributor to the higher power usage that comes with the wireless 
connection. This limits the system’s lifetime due to battery constraints.

It becomes evident that reducing power requirements is imperative. 
The average current drawn by wireless nodes plays a pivotal role in 
determining battery life. For instance, for a 10-year coin cell battery 
lifetime, the average current drawn must be under specific thresholds, 
such as 2.5 μA for CR2032 coin cells. Duty cycling, where the wireless 
node alternates between active and sleep states, emerges as an effective 
strategy to reduce average current consumption when data throughput 
requirements are low. This approach allows for intermittent wake-ups, 
significantly lowering power usage during sleep periods [99].

Bluetooth low energy (BLE) and near-field communication (NFC) 
are two wireless standards that have found widespread use in CGM 
platforms and make it possible to transfer and analyze data in real-time.

NFC has to be in close contact with the receiver circuitry, while low 
energy BLE is a major power consumer. Due to their own limitations, 
neither method is suited for high-density data exchange, which occurs 
when there are many clients with multiple sensors that interface with 
receivers at a fast rate. Wireless communication is impacted by any 
change in the environmental. Hence, it is essential to choose carefully 
the right communication technology in terms of reliability, power con-
sumption and data rate. A brief description for both NFC and BLE 5 is 
shown in the following subsections. Data protection and user privacy 
become issues with the online storage and analysis of such information, 

leading to significant investigation of cryptography methods.
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Fig. 10. Potential energy harvesting schemes for CGM Devices. This diagram categorizes potential energy harvesting methods into three classifications - Ecocentric, 
Body-centric, and hybrid, aimed at CGM devices sustainably.
5.1. Bluetooth low energy

Bluetooth Low Energy (BLE), introduced by Bluetooth Special Inter-
est Group SIG in 2011, was designed for a low-power communication 
purposes that do not require high throughput or a large distance [100]. 
The intention of this protocol is to simplify how to deploy services that 
rely on ultra-low-power electronics [101]. Bluetooth is being used by an 
increasing number of CGM devices to wirelessly share data. By estab-
lishing a local area network, Bluetooth enables a number of devices to 
communicate with one another and synchronize their data in real-time. 
Bluetooth operates at ultrahigh frequencies (UHF) of the industrial, sci-
entific, and medical (ISM) radio spectrum of 2.4 GHz. BLE utilizes 37 
general-purpose physical channels as well as three advertising chan-
nels [102]. It can exchange data at speed of 1-2 Mbps within the range 
of a few tens of meters. Devices that use the BLE protocol fall into one 
of two categories: master or slave. A master device (like a smartphone 
or PC) serves as a central hub that may pair with several slaves. A slave 
device (like CGM) is responsible for the service advertisement and re-
sponse to the master’s requests [103]. BLE uses Advanced Encryption 
Standard (AES) to secure the data over the link between the sensor de-
vice and the mobile application. Data security concerns and interference 
with Wi-Fi are the two constraints of Bluetooth [104].

Over the past two decades, the power consumption for a typical 
Bluetooth or BLE device has decreased substantially, approximately 
20-fold, due to standard expansions. However, despite these improve-
ments, achieving the necessary low average current draw remains a 
challenge, particularly considering the average modern BLE Rx power 
consumption, which ranges from 2 to 6 mW, inhibiting continuous acti-
vation [105]. Several MCUs were designed to support the BLE stack 
layers like CC26XX/CC13XX series by Texas Instruments, STM32WB 
series by STMicroelectronics, nRF52810 System on Chip (SoC) from 
Nordic Semiconductor and CYW20736S System in Package (SiP) by Infi-
neon. This make them more appealing to be employed for the BLE-based 
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CGM devices
5.2. Near field communication

NFC protocol works at close distances (few cms) and utilizes the 
13.56 MHz band for communication [106]. Unlike Bluetooth, data are 
transmitted in NFC without pairing at speeds of 106 kbps, 212 kbps, 
and 424 kbps [107]. Close proximity between two NFC-enabled devices 
allows for the instantaneous exchange of any and all forms of data. 
With NFC, data is stored in a tag that has storage of about 48 bytes to 
1 megabyte of data. The radio frequency identification (RFID) system 
is the basis of this technology. Compared to RFID tags used for identi-
fication, this tag may either be scanned only or editable, allowing the 
system to make changes at a point later. NFC supports both active and 
passive scanning modes [108]. When in active mode, two NFC ports 
(the initiator and the target) may use a radio frequency field to detect 
and collect data from other NFC nodes in direct range. With passive 
mode, the sender is the only one that actively produces the radio-
frequency field, while the receiver just reacts to it. NFC’s improved 
level of security is a result of its faster set-up and reduced commu-
nication range compared to Bluetooth. Moreover, the power may be 
sent by NFC, allowing detecting devices to collect power from the cell-
phone and, therefore, reducing their dimensions. Almost all modern 
smartphones have built-in NFC functionality because of it supports bidi-
rectional communication. On the other hand, the constrained power 
availability and restricted operability in the absence of a reader restrict 
the applicability of NFC to certain scenarios that demand low power 
and low data rates, with size being the primary consideration.

6. Diabetes management

The widespread use of wearable and technological systems has re-
sulted in a significant volume of information becoming publicly avail-
able. The availability of various data sources from CGM, along with re-
cent breakthroughs in Artificial intelligence (AI) techniques, has paved 
the way for a new mindset of algorithm design [109]. Hence, it can 
personalize blood glucose prediction with enhanced efficiency. The op-

portunity to use cutting-edge AI techniques in diabetes management is 
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Fig. 11. The hierarchical interrelationship between AI, ML, and DL.

significant considering the present situation which will in turn help to 
enhance diabetic care. Since healthcare records from many resources 
are typically diverse, high-dimensional, and sparse, they are often un-
derrepresented in care settings.

Using machines to make decisions and forecast the long-term im-
pacts of illnesses and their repercussions is not a novel use of artificial 
intelligence. Most basic jobs in modern society are aided by comput-
ers and algorithms. Coordination between trustworthy machines and 
algorithms is used to take into consideration a number of aspects, in-
cluding equality, accuracy, accountability, dependability, and accept-
ability [110].

AI is the field of computer science that strives to develop models or 
approaches that can investigate data and manage complexity in a vari-
ety of scenarios [111]. AI is involved in modern data-driven solutions 
that facilitate advanced analysis for information and offer personalized 
diabetes assistance [112]. AI encompasses a wide range of complex 
techniques referred to as machine learning (ML), deep learning (DL), 
and cognitive computing. Scientists traditionally train AI models us-
ing enormous volumes of data and procedures, allowing the machine 
to explore and benefit from causal links. Deep learning AI systems find 
useful insights for therapeutic help while doing some hard and time-
consuming activities efficiently. Fig. 11 shows the relation between AI, 
ML, and DL. Cognitive AI systems take things a step further by com-
prehending, reasoning, interacting, and learning. These systems com-
prehend by efficiently and comprehensively analyzing and interpreting 
accessible data, whether structured or unstructured. They think by rec-
ognizing items and links, drawing connections, attempting to claim 
assumptions, and assessing evidence [113–115].

Deep multilayer perceptrons (DMLPs), convolutional neural net-
works (CNNs), and recurrent neural networks (RNNs) are the three 
types of supervised machine learning DNNs that have been identified 
in the diabetic research. The DMLP is the foundation for several DNN 
systems; it is a feed-forward neural network that relies on completely in-
terconnected layers and other basic neuronal connections. Since multi-
layer perceptrons could indicate either ANNs or DNNs, the word “deep” 
is emphasized to show that methods have deep structures with a min-
imum of 3 layers [116]. Weight matrices, bias scalars, and nonlinear 
activation functions like sigmoid, tanh, and rectified linear units (ReLU) 
are all linked to a DMLP’s unique collection of parameters. By acting as 
preceptors, CNNs are able to analyze the data from high-dimensional 
arrays, allowing them to outperform traditional neural networks, es-
pecially, in imagery tasks. Most CNN designs include a sub-sampling 
layer, also known as a pooling layer, to combine maps of features. 
Convolutional processes improve the effectiveness of training via back-
propagation by decreasing the number of links among neurons across 
layers [117].

In contrast to conventional feed-forward neural networks, an RNN’s 
input includes data from preceding time series. Since RNNs can process 
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data sequentially, they are able to effectively capture periodic char-
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acteristics. Back-propagation training may be challenging for vanilla 
RNNs due to the prevalence of gradient diminishing and explosion dif-
ficulties. These issues have been resolved thanks to the introduction of 
gate functionalities and the persistence of long-term data in modern 
RNN cells such as long short-term memory (LSTM) and gated recurrent 
units (GRUs) [118,119]. Models constructed using RNNs have served as 
frameworks for a wide variety of predictive and regression problems. A 
recent development in RNN is the attention technique, which enables 
models to narrow down in specific sub-sequences inside inputs in order 
to map relationships independent of relative closeness [120].

Applying AI algorithms to CGM data offers various real-world appli-
cations that can significantly impact personalized treatment strategies 
and continuous monitoring capabilities. This integration can enable 
predictive analysis, identifying future glucose fluctuations, hypo- or hy-
perglycemic events, and trends. This predictive capability allows for 
proactive interventions, aiding in the prevention of extreme glucose 
fluctuations and enhancing patient safety. Moreover, AI insights de-
rived from CGM data facilitate the creation of individualized treatment 
plans. By analyzing historical data, AI can recommend optimized in-
sulin dosages, dietary modifications, or lifestyle adjustments tailored to 
each patient. This personalized approach leads to improved glycemic 
control and better treatment outcomes, enhancing overall patient care. 
The continuous monitoring capabilities of AI-integrated CGM systems 
offer real-time alerts and decision support. These systems can detect 
deviations from normal glucose levels, generating timely alerts for pa-
tients or healthcare providers. Such interventions can prevent severe 
hypo- or hyperglycemic episodes, ensuring timely care and reducing the 
risk of complications. Additionally, the integration of CGM data with 
AI facilitates remote monitoring and telemedicine. Patients can share 
their real-time glucose data with healthcare providers, allowing for re-
mote consultations and adjustments to treatment plans without frequent 
in-person visits. This accessibility to specialized care enhances patient 
convenience and ensures timely interventions. AI’s ability to analyze 
CGM data alongside patient behavior patterns offers valuable insights 
and feedback. Patients gain a deeper understanding of how their ac-
tions impact glucose levels, encouraging better adherence to treatment 
plans and healthier lifestyle choices. Educational resources and person-
alized recommendations empower patients to self-manage their condi-
tion more effectively. Furthermore, aggregated and anonymized CGM 
data, analyzed using AI, contributes to data-driven research and clini-
cal trials. This approach aids in identifying novel biomarkers, refining 
treatment strategies, and advancing diabetes care through large-scale 
observational studies and research initiatives.

ML could improve our understanding of diabetes by better diagnosis, 
discovering novel disease subtypes, modeling complicated interactions 
with other comorbidities for cardiovascular risk, tracking medication 
response, and offering individualized real-time counseling for lifestyle 
changes or other therapies [121]. Fig. 12 shows the potential applica-
tions of integrating AI with CGM devices.

According to recent studies, modern sensors, pumps, smartphone 
apps, and other advancements in AI are making it simpler and more 
efficient for diabetics to manage their health, reducing the number of 
hypoglycemia events, increasing patient satisfaction, and improving re-
ported results [122–124]. Fig. 13 illustrates how can AI help in the 
diabetes management process.

A meta-review of reported human studies using the most recent au-
tomated, personal or real-time continuous glucose monitoring devices 
(RT-GCM) found that a variety of AI-powered RT-CMG devices are be-
ing introduced to the market, allowing diabetics and their physicians 
to evaluate and enhance diabetes management, decrease hypoglycemic 
occurrences, particularly at night, and to enhance A1C scores [29].

AI will bring in a radical transformation in diabetes treatment, mi-
grating from traditional management approaches to the development 
of tailored data-driven personalized medicine [125]. It was confirmed 
that the amount of insulin injected and the nutrition obtained had an 

impact on blood glucose fluctuations. According to that, some research
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Fig. 12. AI different applications in diabetes. This figure showcases the multi-
faceted role of Artificial Intelligence (AI) in diabetes management, encompass-
ing key applications such as diabetes diagnosis, blood glucose level prediction, 
glycemic control, and identification of diabetic complications such as diabetic 
retinopathy. AI-driven algorithms and machine learning techniques are utilized 
to enhance diagnosis, forecast glucose levels, optimize glycemic control, and 
detect complications promptly.

made the model more accurate by including everyday occurrences like 
glucose, insulin, meals, and physical activity [126]. Although such mod-
els increase prediction accuracy and minimize dependency on a single 
variable, they are less stable. Additional variables that have been shown 
to be significant for diabetic results include sleeping, feelings, anxious-
ness, diabetic distress, and psychiatric co-morbidities such as depressive 
episodes and disordered eating [127–129]. Precision monitoring in di-
abetes is accomplished by integrating CGM readings with the recording 
of these internal and external factors.

Multiple machine learning models can be combined to improve ac-
curacy, making the model less sensitive to different starting parameters 
and noise, thereby increasing robustness [139].

The previous two decades have seen a significant acceleration in the 
development of deep learning thanks to advances in computing both 
hardware and software technologies that have allowed DNN designs to 
grow in architecture and complexity. Table 2 compares several recent 
efforts that employ the ML models. Guardian Connect from Medtronic 
was the first AI-based CGM device approved by the FDA for diabet-
ics [29]. Using self-learning, Guardian Connect can warn users with a 
PH of 60 minutes before any dangerous changes in blood glucose levels. 
About 98.5% of hypoglycemia incidents were detected by the Guardian 
Connect system, allowing patients to take extra precautions to restore 
normal blood glucose concentration. The following datasets are com-
monly used by researchers to train the proposed models:

• OhioT1DM: A total of 12 T1D patients provided 8 weeks of data, 
including BG measurements from Medtronic Enlite CGM sensors 
every five minutes; BG concentration from SMBG; bolus and basal 
insulin dosage; patient-reported nutrition with estimated carbohy-
drate intake; self-reported times of workout, sleep, work, stress, and 
illness; and physiological data from Basis Peak fitness bands [140].

• DirectNet: A total of 110 T1D patients with ages range of seven to 
seventeen had their past blood glucose readings rearranged by 5-
minute intervals. The measurements were collected over the course 
of three months, and in separate episodes, with the consent of both 
patients and their parents, to guarantee their privacy and peaceful-
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ness [141].
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• Diabetes UCI: The data on 70 T1D patients came from two differ-
ent places: an SMBG medical recorder and paper files for recording 
nutrition, physical activities, and insulin doses at previously sched-
uled times [142].

6.1. Challenges of AI

Though AI/ML has shown promise in revolutionizing diabetes man-
agement and CGM devices, several technical hurdles stand in the way 
of its commercialization and adaption in clinic practice.

Due to the fact that AI models, most of the time, need high-quality 
data for developing and training the models, obtaining such data must 
be a top priority. AI has the potential to de-skill professionals by fos-
tering dependency. Since AI requires professional refining on a regular 
basis, this might lead to a vicious circle of insufficient precision [143]. 
With a rising number of medical devices and applications on the mar-
ket, interoperability has been identified as a possible challenge to their 
adoption in glycemic control [144]. Cost, access, and implementation 
are all obstacles to the use of AI in diabetes treatment. Data-driven 
forecasts frequently only utilize a certain approach to predict BG levels, 
which will result in biased findings. Most predictions based on physio-
logical models only take into account a single element, making it harder 
to ensure their prediction accuracy and stability. In order to construct 
multi-model, multi-data-driven approaches that provide the best pre-
diction accuracy, ensemble learning techniques are typically used.

7. Commercial CGM systems

Due to the aging population that is more susceptible to diabetes and 
rising government spending, the market for continuous glucose mon-
itoring is expanding quickly. By 2028, it is anticipated that the total 
global market for continuous glucose monitoring devices would amount 
to 13.24 billion dollars, with a compound annual growth rate (CAGR) of 
10.8% [145]. In a study of around 300 thousand T2D patients, 58% of 
patients discontinued the medication after one year of starting it [146]. 
According to [2], the majority of diabetics (50.1%) are unaware of their 
disease. Personal CGM devices tackle this problem by giving patients a 
very alluring alternative for controlling their blood glucose levels.

While earlier commercial CGM devices’ functionality was signifi-
cantly inferior to that of SMBG, CGM accuracy has increased signifi-
cantly over the years. For SMBG and CGM systems [147], the 2013 
edition of ISO 15197 is a reference with more stringent accuracy re-
quirements. Enzymatic sensors and electrochemical processes are the 
foundation of the most effective commercial CGM systems to date. His-
torically, GlucoWatch was the first professional CGM that used reverse 
iontophoresis to extract glucose via the skin. Glucose was then detected 
by an amperometric biosensor. It was able to offer a glucose mea-
surement every 20 minutes for 12 hours, with mean absolute relative 
difference (MARD) ranging from 19.0 to 21.3% [148]. In the past quar-
ter century, CGM commercial platforms have made advances in pricing, 
size, lifetime, accuracy, price, and user experience. Fig. 14 shows the 
FDA-approved CGM devices timeline along with some promising star-
tups.

The Guardian CGM device, which may alert patients to possible 
severe hyper/hypoglycemia, was initially developed by Medtronic in 
2004. The same manufacturer also produced the first effective closed-
loop system in 2006. Dexcom launched the STS, its first real-time CGM, 
during that same time. Abbott introduced the FreeStyle Navigator to 
the US market in 2008. The earliest CGM systems needed blood glu-
cose validation before making any insulin injections. Before the rise of 
FreeStyle Libre 2, all commercial CGMs needed to be calibrated using 
SMBG, which presented a challenge if they were utilized in a closed-
loop insulin delivery system.

Table 3 presents a summary of commercial CGM devices for com-
parison. MARD, derived from the absolute relative difference (ARD), 

was used to compare the accuracy of the different systems (Eq. (1)
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Fig. 13. Diabetes management Framework. This schematic diagram outlines a comprehensive diabetes management framework encompassing key elements such as 
CGM measurements, insulin administration, dietary control, physical activity, and healthcare intervention towards effective diabetes care and patient well-being.
and (2)). In terms of overall MARD, Freestyle Liber III has achieved 
the best commercial sensor score with 7.9% [149]. Eversense was the 
first fluorescence-based and fully implantable glucose to be approved 
by FDA. Since Eversense is implanted underneath the skin, it has the 
best lifespan. Its worst drawback is the implant operation, which re-
quires the patient to perform surgery again each 180 days. The other 
CGMs use monitoring that is nearly painless. Dexcom is one of them, 
and their devices can be utilized in a closed loop with insulin pumps 
since they are more accurate. The devices from Abbott offer the least 
warm-up periods and the greatest usage duration [150]. Based on skin 
bioimpedance, the Pendra wristband CGM was created by Pendragon in 
2003. Unfortunately, post-marketing evaluation research found that it 
was inaccurate and unreliable, with a MARD of 52% then the product 
was subsequently taken off the market [151]. Despite the fact that vari-
ous research organizations have been working on sweat-based CGM for 
decades, there are currently no feasible ones on the market. For tears, 
it should be mentioned that Google and Novartis had an unsuccessful 
trial to develop a smart contact lens to monitor the glucose levels in 
tears [152].

ARD𝑖 =
|𝑦𝑖 − 𝑥𝑖|

𝑥𝑖
100% (1)

MARD = 1
𝑁ref

𝑁ref∑
𝑖=1

ARD𝑖 (2)

where 𝑥𝑖 and 𝑦𝑖 are the blood glucose levels collected from the reference 
technique and the sensor under test, respectively, and Nref is the total 
number of times reference tests have been conducted.

8. Challenges

Current glucose monitoring solutions, while advanced, still face sev-
eral challenges that impact their effectiveness, usability, and widespread 
adoption. In this section, the barriers that could delay or facilitate CGM 
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devices implementation are discussed.
Accuracy and Variability: Accuracy issues persist in some glucose 
monitoring systems, especially when readings are compared against lab-
oratory measurements. Disparities between the integrated measuring 
technique and the calibration method (both methods generally measure 
inside blood, preferably capillary blood) are the key factors influencing 
accuracy when evaluating CGM devices [153]. Variability in accuracy 
across different devices and users poses a challenge. Trials evaluating 
the precision of recently developed commercial CGM devices in noncrit-
ically sick patients indicate that the accuracy varied among the trials, 
but shown improvement with time. Various studies have assessed the 
precision of various CGMs by comparing them to Point-of-Care blood 
glucose tests. The MARD values observed in these publications ranged 
from 9-16% [154–157].

Calibration and Sensor Drift: Some CGM systems require frequent 
calibration, which can be cumbersome and affect accuracy. Sensor drift, 
where readings gradually diverge from actual glucose levels over time, 
is another concern [158].

Interference and Lag Time: External factors like medications, tem-
perature changes, and certain substances can interfere with sensor ac-
curacy, leading to inaccurate readings. It is crucial to acquaint doctors 
with circumstances in which the use of CGM may not be accurate or de-
pendable. Multiple factors might influence the accuracy and reliability 
of the devices including interfering chemicals, or radiologic substances, 
which can affect the process of glucose detection, transmission, or data 
capture using the reader device [159]. Additionally, some CGM systems 
have a lag time between blood glucose changes and sensor readings. 
CGM systems are subject to the impact of the temporal delay that oc-
curs between changes in glucose levels in the ISF and the compartment 
(i.e., blood) from which comparison measurements are taken.

Cost and Accessibility: High costs associated with acquiring and 
maintaining continuous glucose monitoring devices, along with limited 
insurance coverage, can restrict accessibility for some patients, limiting 
their use in routine care [160].

User-Friendliness and Integration: User interface complexities, in-

cluding difficulties in interpreting data and navigating device interfaces, 
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Table 2

A collection of efforts for machine learning based BG monitoring.

Study Model(s) Features Dataset Target Error Analysis (Evaluation)

[130] Vanilla LSTM, Temporal 
Convolution Network (TCN) 
and classic Autoregression 
with Exogenous inputs (ARX)

BG, insulin, 
carbohydrate intake, 
physical activity

8 week’s data collected from 6 
anonymous T1D patients under 
insulin pump therapy 
(Medtronic Enlite CGM sensors)

predicting BG levels Root Mean Square Error (RMSE), temporal 
gain (TG), normalized energy of the 
second-order differences (ESOD)

[131] autoregressive moving 
average (ARMA) model and 
(LSTM)

BG, insulin, 
carbohydrate intake, 
physical activity

29 real patients short-term personalized 
glucose prediction

(RMSE) and mean absolute error(MAE) 
RMSE 3.13, 6.41 and 8.81 mg/dL and MAE 
1.98, 5.06 and 6.47 mg/dL for 5-, 15- and 
30-min PH

[132] multi-layer Convolutional 
Recurrent Neural Network 
(CRNN)

glucose readings, 
insulin bolus, and 
meal data

In silico form UVA/Padova 
dataset and clinical data 
collected from T1D in a 6 
month clinical trial using G4 
Dexcom platinum

short-term personalized 
glucose prediction

Simulated data:
RMSE = 9.38 ± 0.71 mg/dL (30 min PH), 
18.87 ± 2.25 mg/dL (60 min PH)
Real data:
RMSE = 21.07 ± 2.35 mg/dL (30 min PH), 
33.27 ± 4.79% (60 min PH)

[23] logistic regression analysis CGM, daily entries of 
meal and bolus insulin

six-week study in 12 T1D 
adults using CGM and a 
clinically validated wearable 
sensor wristband

predict glucose levels 
and 
hypo/hyperglycemia

RMSE: 35.3 ± 5.8 mg/dL

[133] Fast-adaptive and Confident 
Neural Network (FCNN)

CGM, meals, insulin, 
exercise

12 subjects with T1D BG level RMSE, MAE, gRMSE, and PTD root mean 
square error of 18.64±2.60 mg/dL and 
31.07±3.62 mg/dL for 30 and 60-minute 
prediction horizons, respectively

[134] Random forest, ANN, SVM, 
linear logistic regressions, 
and extended tree classifiers

CGM data, meal 
intake and insulin 
boluses

OhioT1DM BG concentrations to 
appropriate preventive 
action (snack or change 
in basal insulin)

the area under the receiver operating 
characteristic curve (AUC-ROC) = 0.7 
GMEAN = 0.65

[135] SVM, multilayer perceptron 
networks (MLP)

interstitial glucose 
concentration, meals, 
insulin doses, and 
SMBG values, activity

10 subjects with 12 week data 
of FreeStyle Libre commercial 
CGM, Fitbit Alta HR wristband 
for activities and sleep patterns

hypo/hyperglycemia 
during sleep period

Sensitivity: 78.75% (SVM), 69.52 (MLP) 
Specificity: 82.15% (SVM), 78.98 (MLP) 
Accuracy: 80.77 (SVM), 77.38% (MLP) 
Gmean: 79.19% (SVM), 72.90% (MLP)

[136] LSTM fed through a NN with 
2 hidden dense layers

previous BG level 
measurements

OhioT1DM BG level prediction with 
1hr PH + certainty

RMSE: 18.67 (30 min PH), 31.4 (60 min PH)

[137] Non-Linear Autoregressive 
Neural Network (NAR) LSTM 
fed through a NN with 1 
hidden dense layer

previous BG level, 
insulin intake

Real time data from 451 
patients

BG level for different 
PHs

RMSE for 30, 45 and 60 min PH of 19.47, 
26.47 and 32.38 mg/dL respectively

[138] Enhanced RNN with reduced 
boltzman machines 
(RNN-RBM)

BG level history 10 subjects with T1D randomly 
selected from DirecNet dataset

prediction of 
near-future blood 
glucose levels

RMSE: 15.59 mg/dL for 30 min PH
can be a barrier to adoption. Integration of glucose monitoring data into 
electronic health records or other systems might not be seamless.

Wearability and Longevity: Wearability issues, such as adhesive-
related skin reactions or discomfort caused by continuous wear of de-
vices, can affect long-term adherence. Some sensors might have limited 
wear time, necessitating frequent replacements [161].

Interpreting results: Some users, particularly older adults, may face 
challenges in interpreting the results provided by CGM devices, which 
can impact their ability to effectively manage their glucose levels.

Device adhesion and detachment: CGM devices may become de-
tached unintentionally, affecting the accuracy of glucose monitoring 
and causing inconvenience for users, as reported in a study involving 
adults aged 50 to 85 years with diabetes [162].

Regulatory Compliance and Standardization: Compliance with 
stringent regulatory standards, including ensuring device accuracy, 
safety, and reliability, adds complexity to device development and ap-
proval. The International Organization for Standardization (ISO) stan-
dard ISO 15197 offers exact standards for evaluating the reading accu-
racy of SMBG devices. However, there is currently no matching coun-
terpart available for CGM devices. The current guidelines, FDA-iCGM 
special controls [163], IEC 60747-14-10, and CLSI POCT05, are not 
only inadequately standardized in terms of specifications and world-
wide acceptance, but they also raise a number of significant problems 
that remain unresolved. Lack of standardization across devices can also 
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hinder interoperability and data sharing.
Another type of challenges specifically faces the AI-integrated CGM 
devices which suffer from:

Erroneous readings and false alarms: Physical compression of tis-
sue around the sensor can lead to erroneously low glucose readings and 
false alarms, impacting the reliability of the device.

Alarm fatigue: Users may experience alarm fatigue due to frequent 
alerts from the CGM device, which can lead to desensitization and re-
duced responsiveness to important alerts [160].

Addressing issues related to invasiveness, accuracy, usability, cost-
effectiveness, and regulatory compliance is crucial for the development 
and adoption of more effective, user-friendly, and accessible glucose 
monitoring solutions. Advancements in technology that overcome these 
challenges will greatly enhance diabetes management, improve patient 
adherence, and positively impact overall health outcomes for individu-
als living with diabetes.

The adoption timeline for advanced glucose monitoring technolo-
gies, encompassing minimally invasive, non-invasive, and AI-integrated 
systems, hinges on a combination of facilitators and barriers. Techno-
logical advancements, robust clinical evidence, regulatory approvals, 
and seamless healthcare integration serve as key facilitators. However, 
challenges like stringent regulations, cost considerations, acceptance 
by healthcare providers, and data interoperability pose potential de-
lays. Envisioning the timeline involves an initial phase of specialized 
use, followed by gradual integration into mainstream practice over sev-
eral years, eventually leading to widespread adoption, contingent upon 

overcoming these barriers through collaboration among stakeholders. 
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Fig. 14. Timeline of FDA-Approved CGM devices which shows that the first FDA approved device was in 1999 and there is 29 FDA approved version since 1999 till 

2022.

Overcoming these challenges is pivotal for realizing the substantial ben-
efits these innovations offer in enhancing diabetes management and 
patient outcomes.

9. Discussion and future prospective

An interdisciplinary look at CGM different technologies is presented 
in this review study. Developing reliable, non-invasive CGM systems for 
widespread usage involves participation from experts in several fields. 
Despite the fact that commercial CGM devices have been developed, 
there is still room for improvement in their accuracy to collect more 
trustworthy data for diabetes diagnosis. The little glucose content in 
various biofluids necessitates a high sensitivity to make it useful in clin-
ical practice. Another critical issue that should have been addressed 
more thoroughly is electrochemical sensors’ biofouling, particularly ISF-
based ones. Biofouling is the accumulation of proteins, cells, or other 
molecules on the surfaces of a biosensor as a result of contact with the 
biofluid [164]. Biosorption of the desired analyte rapidly prevents it 
from reaching the sensor surface, leading to a delayed response, a lower 
biosensor sensitivity, and a limited sensor lifetime. Excellent antifouling 
coating materials made from a layer of biopolymers (such as polyethy-
lene glycol) or zwitterion molecules are two desirable approaches to 
resolving this issue, together with sensitive automated calibration pro-
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cesses. Sensor surface materials should be chosen to keep enzymes on 
the sensor and prevent the leakage of any potentially harmful sensor 
components while minimizing biofouling effects and excluding concur-
rent electroactive interference. Integrating diabetics with CGM devices 
requires seamless technological interoperability. It is possible for there 
to be one-way or two-way communication. Since the MCUs can only 
work with digital data, the glucose sensor signal must be handled first. 
By using an AFE, signal conditioning electronics may be kept to a mini-
mum. Communication protocols including I2C, SPI, and UART are often 
used to set up the connection between AFE and the MCU. The protocols 
used by AFE and the microcontroller must be interoperable with one 
another. The primary communication options for integrating CGM de-
vices with the central hub are BLE and NFC. Bluetooth allows sensors 
to communicate with mobile devices like smartphones and PCs and has 
a limited data transfer rate with a high throughput of 2.1 Mbps at dis-
tances of up to 100 meters. BLE is best suited for data transmission 
in high-density environments like hospitals and operation rooms. The 
gateway devices are linked to the data-center through private Wi-Fi, 
which offers improved reliability and security. Loss of Internet or BLE 
connection, while the measuring equipment is in motion, poses a risk of 
losing vital data and delaying healthcare delivery to diabetics. There-
fore, both the Wi-Fi or BLE modules have to provide optimal scanning 
methods to ensure mobile devices may continue to access the network 
even in highly congested radio frequency (RF) conditions. Besides wire-

less data transfer, NFC-based sensor solutions provide wireless power 
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Table 3

Comparing different CGM vendors and start-ups.

Device name Sensing mechanism Bio-fluid Needs 
calibration?

Sensor 
lifetime (days)

Over-all 
MARD (%)

Insulin pump 
compatibility

hypo/hyper 
glycemia prediction

Dexcom G7 Electrochemical Microneedle ISF 10 + 12-hour 
grace period

8.2

MiniMed 770G Electrochemical Microneedle ISF 6-7 8.68-
10.96

GlucoMenDay Electrochemical Microneedle ISF 1 per day 14 9.6 GlucoMen 
Day

FreeStyle Libre 3 Electrochemical Microneedle ISF 14 7.9

Eversense E3 Fluorescence ISF 1-2 per day 180 8.5

NovioSense∗ Electrochemical micro spiral 
coil

Tears N/A 14 12.5 -

K’Watch Glucose∗ Electrochemical Microneedle ISF - 7 18 - -

LIFELEAF∗ optical Blood - - - - -

sugarBEAT∗ Electrochemical Microneedle ISF 1 per day 14 hours 12.3

glucoWISE∗ Radio waves around the 40 
GHz range (millimeter waves)

Blood - - - - -

∗ Start-up, not approved by FDA.
transfer. An NFC microchip and a coupling antenna have the poten-
tial to be used instead of batteries or wiring to create a totally flexible 
construction for the CGM device.

On the other hand, self-powered solutions offer a potential future 
for glucose monitoring due to their compact design, lightweight, ease 
of wear, and lack of environmental impact. Consistent with this trend, 
self-powered glucose monitoring has taken important steps in the re-
cent years. While many advances have been made in developing self-
powered sensors capable of continuous glucose monitoring, most of 
these systems remain in the proof-of-concept stage. There is more work 
to be done before self-powered glucose monitoring devices, both im-
planted and wearable, can become a reality.

While there is currently no recognized treatment for Type 2 di-
abetes [165], early detection and management are essential to pre-
venting the condition and may delay or perhaps stop the significant 
consequences that are linked to diabetes. Advanced computing tech-
niques, such as artificial intelligence (AI), are on the rise because of 
their promising uses in data analysis. Subsets of AI like ML and DL 
will remain the most popular approaches for some time to come be-
cause of their useful applications in areas like smart alarms developing 
an accurate AP. The latest breakthroughs in AI algorithms increased the 
effectiveness of diabetes management in a variety of contexts, including 
complications prevention and therapy. As a result, cutting-edge smart-
phone algorithms may soon be utilized to predict glucose variations, 
speed up the decision-making cycle, and aid the medication delivery 
mechanism in precisely managing glucose-related symptoms. We have 
shown that many in-vitro tests have been performed, but in-vivo trials 
are still necessary to verify the system’s safety. In order for the monitor-
ing system to be clinically approved, it must overcome obstacles related 
to minimally invasive procedures and prolonged utilization.

The development of alternative energy sources is another area of 
potential. On the one hand, there is an ongoing development in the 
field of self-powered devices, and many are working to create useful 
miniaturized self-powered CGM. However, alternative battery technolo-
gies are being adopted, and batteries are becoming bendable, printable, 
and lightweight; these developments aligned with the desire for next-
generation wearable and implanted glucose monitoring devices.

The accessibility of genetic information, like that supplied by 
metabonomics analyses, may enhance the use of AI technologies for 
the customization of diabetes treatment. Increasing access to digitalized 
glucose data from diabetics, new AI applications, and rising academic 
areas like AP and precision medicine all point to the possibility of a 
shift toward a novel diabetes care framework. This novel perspective 
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supports individualized diabetes care by adapting clinical procedures, 
diagnostics, and therapies to each patient’s specific needs. However, 
doctors and researchers need to consider the ethical consequences of 
incorporating AI technologies into medical decision-making. Further-
more, they need an investigation into the moral threats posed by the 
disclosure of sensitive information.

10. Conclusion

In conclusion, this survey has provided an in-depth analysis of 
various aspects of glucose sensing and CGM technology for diabetes 
management. We have explored the key elements of glucose sensors, 
the sensing principles of sensors, energy storage options, AI integra-
tion, and commercially available CGM systems from both established 
companies and startups. The advancement of minimally/noninvasive 
monitoring biosensors that target glucose in tears, sweat, saliva, and 
urine has recently attracted a lot of attention. This led to the concept of 
non-invasive and continuous glucose monitoring. While non-invasive 
optical-based methods for glucose monitoring exhibit significant po-
tential and are actively being researched and developed, challenges 
regarding accuracy, calibration, and regulatory approval need to be ad-
dressed for these technologies to reach their full potential. On the other 
hand, minimally invasive sensors based on ISF extraction hold tremen-
dous promise in bridging the gap between invasive and non-invasive 
glucose monitoring methods. Their potential for continuous monitoring, 
reduced invasiveness, relatively high accuracy, and wearability posi-
tions them as a viable option for individuals seeking a more comfortable 
and less intrusive method for glucose monitoring. The study showed 
that a huge effort has been done over the past few decades to develop 
wearable devices for glucose monitoring. Hence, a discussion of the dif-
ferent components of the wearable device was illustrated in this study. 
One major part of wearable devices is wireless communications. The 
wireless communications module enables the collection of the sensor 
readings from the wearable device and sending them to a data center. 
However, we found that wireless communication is the main constraint 
on the battery lifetime. We discussed two commonly used communi-
cation protocols in wearable devices and these are NFC and BLE. It 
has become clear that advancements in developing precise CGM tech-
nology have the potential to revolutionize diabetes management. The 
development of self-powered glucose sensors, the integration of AI in 
CGM systems, and the emergence of a wide range of commercial CGM 
solutions are some of the key advancements that are improving the ac-
curacy, convenience, and effectiveness of diabetes care. Challenges such 
as accuracy, reliability, and cost-effectiveness still exist, and ongoing re-

search and development in this field are necessary to overcome these 
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challenges and bring more effective solutions to the market. Overall, 
it is important to continue research and development to incorporate a 
number of functional modules in the future, which calls for multidisci-
plinary and bridge collaboration across the domains of nanomaterials, 
medical science, AI, electrochemistry, flexible electronics, and other 
disciplines. This will enable the development of more durable and trust-
worthy, accurate and effective, lightweight and convenient, smart and 
innovative non-invasive CGM devices, and secured closed-loop systems 
to fulfill diabetics and market expectations.
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