
structure.py

a = Signal()
b = Signal(2)
c = Signal(max=23)
d = Signal(reset=1)
e = Signal(4, reset_less=True)
f = Signal.like(c)
g = f.nbits

ClockSignal("sys") → Returns the clock signal of a given
clock domain

ResetSignal("sys") → Returns the reset signal of a given
clock domain

Mux(sel, val1, val0) → Multiplex between two values. Output
val1 is sel asserted else val0.

Cat(a, b, ...) → Form a compound value from several
smaller ones by concatenation. The first
argument occupies the lower bits of the
result.

If(a,
 b.eq(1)
).Elif(c,
 b.eq(0)
).Else(
 b.eq(d)
)

→ Conditional execution of statements

Case(a, {
0 : b.eq(1),
3 : c.eq(0),
5 : b.eq(d),
"default": b.eq(0),
})

→ Dictionary of cases. Selector value
used to decide which block to execute.

Array([a,b,c,...]) → Represents lists of other objects that
can be indexed by FHDL expressions

ClockDomain() → Creation of a synchronous domain

Constant() → Represents a constant, HDL literal
integer. Thus, it supports slicing and
can have a bit width different from what
isimplied by the value it represents

resetsync.py

AsyncResetSynchronizer(Special) → Connects a synchronized reset
signal to the provided
ClockDomain

cdc.py

MultiReg(Special) → Signal synchronization

PulseSynchronizer(Module) → Signal synchronization of a pulse
in a fast clock domain to a
relatively slow clock domain

GrayCounter(Module) → The Gray code outputs differ in
only one bit for every two successive
values

ElasticBuffer(Module) → Implementation of an elastic buffer

Gearbox(Module) → Implementation of a Gearbox

decorator.py

@CEInserter
CEInserter()(module)

→ Add Clock Enable signal to a
module

@ResetInserter
ResetInserter()(module)

→ Add Reset signal to a module
(independant from clock domain
reset)

ClockDomainsRenamer()(module) → Change clock domain of a module

io.py

DifferentialInput(Spec
ial)

→ Instanciate a vendor specific
differential input

DifferentialOutput(Spe
cial)

→ Instanciate a vendor specific
differential output

DDRInput(Special) → Instanciate a vendor specific double
data rate input

DDROutput(Special) → Instanciate a vendor specific double
data rate output

CRG(Module) → Simple Clock and Reset Generator.
Creates sys clock domain, assign given
clk signal. Generates a Power On Reset

fifo.py
SyncFIFO(Module) → Implementation of a synchronous FIFO. Read and

write interfaces are accessed from the same clock
domain. If different clock domains are needed, use
AsyncFIFO

SyncFIFOBuffered(Module) → Registered FIFO output. Improves timing when it
breaks due to sluggish clock-to-output delay.
Increases latency by one cycle.

AsyncFIFO(Module) → Read and write interfaces are accessed from
different clock domains, named `read` and `write`.
Use ClockDomainsRenamer to rename to other names.

AsyncFIFOBuffered(Module) → Registered FIFO output. Improves timing when it
breaks due to sluggish clock-to-output delay.
Increases latency by one cycle.

coding.py
Encoder(Module) → Encode one-hot to binary

PriorityEncoder(Module) → Encode one-hot with priotity to
binary

Decoder(Module) → Binary to one-hot

PriorityDecoder(Module) → Binary to one-hot

fsm.py

fsm = FSM(reset_state="START")
self.submodules += fsm

→ Create a FSM (reset_state is optional)

fsm.act("MYSTATE",
 # assignment1,
 # assignment2,
)

→ Add a state with statements

NextState("MYSTATE1") → Assign next state

fsm.act("MYSTATE",
 NextValue(a, b),
 ...,
)

→ Synchronous statement inside a given state,
equivalent to self.sync += a.eq(b) when the FSM is
in the given state.

fsm.act("MYSTATE",
 a.eq(b),
 ...,
)

→ Combinatorial statements of form a.eq(b) are
equivalent to self.comb += a.eq(b) when the FSM is
in the given state. Outside this state, if not
stated, a.eq(0)

fsm.ongoing("MYSTATE") → Returns a signal that has the value 1 when the
FSM is in the given state, and 0 otherwise

fsm.before_entering("MYSTATE") → Returns a signal that has the value 1 during the
clock cycle before entering the given state

fsm.before_leaving("MYSTATE") → Returns a signal that has the value 1 during the
clock cycle before leaving the given state

fsm.after_entering("MYSTATE") → Returns a signal that has the value 1 during the
clock cycle after entering the given state

fsm.after_leaving("MYSTATE") → Returns a signal that has the value 1 during the
clock cycle after leaving the given state

fsm.delayed_enter("STATE1", "STATE2", delay)

record.py

Record(name, size)
Record(name, size, direction)
Record(name, sublayout)

Example :

layout = [
 ("a", 32, DIR_M_TO_S),
 ("b", 1),
]

r = Record(layout)
self.comb += r.a.eq(25)

→ Create a Record. Size is an int, sublayout must
be a list. A layout is an equivalent of a C
structure. It’s a collection of signals.

layout_len(layout) → Gives the len (in bits) of the layout

layout_get(layout, name) → Get the layout of a named entry in a layout

r = Record(layout)
r.flatten()

→ Returns a list of all signals contained in the
record

r = Record(layout)
r.raw_bits()

→ Returns a signal of len equals to layout_len.
This signal is a flatten representation of all
Record’s bits.

layout = [
 ("a", 32, DIR_M_TO_S),
 ("b", 1, DIR_S_TO_M),
 ("c", 1, DIR_S_TO_M),
]

m = Record(layout)
s = Record(layout)
m.connect(s, omit={"c"})

→ Connect signals of a given records. Direction
depend of direction defined in the layout.
Here, this is equivalent to m.b.eq(s.b) and
s.a.eq(m.a).
Signal can be omitted during connection (omit) or
all omitted except kept signals (keep).

misc.py

aa = Signal(8)
bb = Signal(3)
cc = Signal(64)

displacer(aa, bb, cc)

aa.eq(0xAA)
bb.eq(2)

→ cc is 0x0000000000AA0000

→ Makes cc equal to aa <<
bb.
bb is expressed as a
multiple of aa size.
Value aa is displaced at
position bb in cc.

aa = Signal(64)
bb = Signal(3)
cc = Signal(8)

Chooser(aa, bb, cc)

aa.eq(0xAABBCCDD11223344)
bb.eq(2)

→ cc is 0x33

→ Makes cc equal the value
of it’s size choosen in aa
at index bb.

timeline(start, [
 (t0,
[assignment1,assignment2,...]),
 (t1,
[assignment3,assignment4,...]),
 …
])

→ Execute statement in a
timely manner. Sequencing
starts when start
condition is true. Then at
each point in time (t0,
t1,…) expressed as clock
count, correspondings
assignments are made.

WaitTimer(Module) → Take a number (n) of
clock period as parameter.
When signal wait is
asserted, signal done
become active after (n)
period of clock.

bitcontainer.py

bits_for(n)
→ Returns how many bits are need to hold
the value n

log2_int(n) → Returns the power to which the number 2
must be raised to obtain the value n

value_bits_sign(s) → Returns a tupple (nb_bits, sign) of
given signal

specials.py

TSTriple(size)
→ A triplet (O, OE, I) defining a tri-state I/O port.
Such objects are only containers for signals that are
intended to be later connected to a tri-state I/O
buffer, and cannot be used as module specials

Tristate(target, o, oe, i) → Instance of a tri-state I/O buffer.
Signals target, o and i can have any width, while oe is
1-bit wide. The target signal should go to a port and
not be used elsewhere in the design.

din = Signal(32)
dout = Signal(32)
dinout = Signal(32)

self.specials += Instance("custom_core",
 p_DATA_WIDTH = 32,
 i_din = din,
 o_dout = dout,
 io_dinout = dinout
)

→ Add an external Verilog or VHDL module to the design.

The first parameters of the Instance is the Module's
name followed by the parameters and ports of the
Module.

Prefixes are used to specify the type of interface:

 p_ for a Parameter
 i_ for an Input port
 o_ for an Output port
 io_ for a Bi-Directional port

Memory(width, depth, init)

mem = Memory(32, 128)
port = mem.get_port()
self.specials += mem, port

→ Instance of an on-chip SRAM. The width is the number
of bits in each word, the depth is the number of words
in the memory and an optional list of integers used to
initialize the memory.

To access the memory in hardware, ports can be obtained
by calling the get_port method. A port always has an
address signal a and a data read signal dat_r. Other
signals may be available depending on the port’s
configuration.

Migen Cheat Sheet

https://m-labs.hk/gateware/migen/

@fjullien06

https://github.com/fjullien

	Page 1

