
Memories
V1.
0

▶ Usage of Memories
● Addressable memories
● FIFO
● Stream FIFOs

▶ Workshop

Franck Jullien
@fjullien06

https://github.com/fjullien

Memories – addressable RAM/ROM

Memories – example

▶ Interface:

● rport.adr, rport.dat_r
● wport.adr, wport.dat_w, wport.dat_r, wport.we

Memories – addressable RAM/ROM

A list of valuesNumber of words
Size of each word
in bits

Memories – get_port

Port will have a dat_w and a
we signals if True

Memories – get_port

Port will have a dat_w and a
we signals if True

Read data are immediately
available if async_read is
True. If False, reads are
synchronous (value on the
next clock cycle).

Memories – get_port

Port will have a dat_w and a
we signals if True

Read data are immediately
available if async_read is
True. If False, reads are
synchronous (value on the
next clock cycle).

Port will have a re signal to
allow output data update (only
in synchronous mode) if True

Memories – get_port

Port will have a dat_w and a
we signals if True

Read data are immediately
available if async_read is
True. If False, reads are
synchronous (value on the
next clock cycle).

Port will have a re signal to
allow output data update (only
in synchronous mode) if True

Choose how many
dat_w bits are
masked by each we
bit

Memories – get_port

Port will have a dat_w and a
we signals if True

Read data are immediately
available if async_read is
True. If False, reads are
synchronous (value on the
next clock cycle).

Port will have a re signal to
allow output data update (only
in synchronous mode) if True

Choose how many
dat_w bits are
masked by each we
bit

Chose which dat_r
value is given during
a write (ignored for
asynchronous ports)

Memories – get_port

Port will have a dat_w and a
we signals if True

Read data are immediately
available if async_read is
True. If False, reads are
synchronous (value on the
next clock cycle).

Port will have a re signal to
allow output data update (only
in synchronous mode) if True

Choose how many
dat_w bits are
masked by each we
bit

Chose which dat_r
value is given during
a write (ignored for
asynchronous ports)Ports can have

different clock
domain

Memories – get_port

Read/Write behavior
is always the same
(mode is ignored)

dat_r changes as soon as adr changes

dat_w writes are latched

Memories – get_port

The data read signal
keeps its previous
value on a write.

dat_r is value from the old address 1 then
the written value

After the write cycle, dat_r
keeps its previous value,

then the written value

Memories – get_port

During a write, the
previous value is
read

dat_r is value from the old address 1 then
the written value

Memories – get_port

The written value is
returned

dat_r is value from the
the written value

Memories – FIFOs

▶ SyncFIFO → Same clock on both sides
▶ SyncFIFOBuffered → Same as SyncFIFO but

uses synchronous output
▶ AsyncFIFO → Different clocks on both

sides
▶ AsyncFIFOBuffered→ Same as AsyncFIFO but

uses synchronous output

▶ They are Modules and must be added as submodules

Memories – FIFOs

▶ Interfaces:
● din → data input
● we → write enable
● writable → ‘1’ if the fifo is not full
● dout → data output
● re → read enable
● readable → ‘1’ if the fifo is not empty
● level → number of unread entries
● replace → replaces the last entry written into the FIFO

▶ Parameters:
● width →data width in bits
● depth →number of data words
● fwft →First Word Fall Through (only for SyncFIFO)

Memories – SyncFIFO

FIFO classes have read
and write methods for
simulation

The data is available immediately

Memories – SyncFIFO

The data is available when
requested

Memories – SyncFIFOBuffered

Same as SyncFIFO with
fwft=True but with an extra

latency cycle

Memories – AsyncFIFO

Same as SyncFIFO with
fwft=True

Clock domains have to be renamed

Memories – AsyncFIFOBuffered

Same as AsyncFIFO with
one extra cycle

Memories – Stream FIFO

▶ stream.SyncFIFO, stream.AsyncFIFO

▶ Sync/AsyncFIFOBuffered variant replaced by a parameter

▶ Data width is replaced by layout

▶ Ready/Valid signals replace readable/writable
● Sink→Ready while there is free space
● Source→Valid when the FIFO not empty

▶ They are Modules and must be added as submodules

Memories – SyncFIFO

The FIFO is full.
sink.ready goes low

When the source gets
the ready signal

data can be extracted
From the FIFO

Memories – AsyncFIFO

Always use ready & valid
as an acknowledge

Workshop – extra 1

▶ Create a stream clocked at 150MHz
▶ Data from an initialized memory
▶ Data can be updated from a writer port

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

