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Memories – addressable RAM/ROM



Memories – example

▶ Interface:

● rport.adr, rport.dat_r
● wport.adr, wport.dat_w, wport.dat_r, wport.we



Memories – addressable RAM/ROM

A list of valuesNumber of words
Size of each word 
in bits
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Memories – get_port

Read/Write behavior 
is always the same 
(mode is ignored)

dat_r changes as soon as adr changes 

dat_w writes are latched



Memories – get_port

The data read signal 
keeps its previous 
value on a write.

dat_r is value from the old address 1 then
the written value

After the write cycle, dat_r
keeps its previous value,

then the written value 



Memories – get_port

During a write, the 
previous value is 
read

dat_r is value from the old address 1 then
the written value



Memories – get_port

The written value is 
returned

dat_r is value from the
the written value



Memories – FIFOs

▶ SyncFIFO → Same clock on both sides
▶ SyncFIFOBuffered → Same as SyncFIFO but 

uses synchronous output
▶ AsyncFIFO → Different clocks on both 

sides
▶ AsyncFIFOBuffered→ Same as AsyncFIFO but 

uses synchronous output

▶ They are Modules and must be added as submodules



Memories – FIFOs

▶ Interfaces:
● din → data input
● we → write enable
● writable → ‘1’ if the fifo is not full
● dout → data output
● re → read enable
● readable → ‘1’ if the fifo is not empty
● level → number of unread entries
● replace → replaces the last entry written into the FIFO

▶ Parameters:
● width →data width in bits
● depth →number of data words
● fwft →First Word Fall Through (only for SyncFIFO)



Memories – SyncFIFO

FIFO classes have read
and write methods for
simulation

The data is available immediately



Memories – SyncFIFO

The data is available when
requested



Memories – SyncFIFOBuffered

Same as SyncFIFO with
fwft=True but with an extra

latency cycle



Memories – AsyncFIFO

Same as SyncFIFO with
fwft=True

Clock domains have to be renamed



Memories – AsyncFIFOBuffered

Same as AsyncFIFO with
one extra cycle



Memories – Stream FIFO

▶ stream.SyncFIFO,  stream.AsyncFIFO

▶ Sync/AsyncFIFOBuffered variant replaced by a parameter

▶ Data width is replaced by layout

▶ Ready/Valid signals replace readable/writable
● Sink→Ready while there is free space
● Source→Valid when the FIFO not empty

▶ They are Modules and must be added as submodules



Memories – SyncFIFO

The FIFO is full.
sink.ready goes low

When the source gets
the ready signal

data can be extracted
From the FIFO



Memories – AsyncFIFO

Always use ready & valid
as an acknowledge



Workshop – extra 1

▶ Create a stream clocked at 150MHz
▶ Data from an initialized memory
▶ Data can be updated from a writer port
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