
Franck Jullien
@fjullien06

https://github.com/fjullien

V1.0

Introduction to digital design with Migen and Litex

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 2

What are we going to talk about ?

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 3

Digital Design – Base elements

Hardware consist of a few simple building blocks

1. Combinatorial
▶ “Instant” state changes, e.g.:

Classical gates (especially NAND & NOR)

Multiplexer (MUX)

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 4

Digital Design – Truth table

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 5

Digital Design – 8 bits adder

Design of an 8 bits adder

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 6

Digital Design – 8 bits counter

Design of an 8 bits counter

Adder

A

B

OUTPUT

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 7

Digital Design – 8 bits counter

Design of an 8 bits counter

Adder

A = Increment = 1

B

OUTPUT

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 8

Digital Design – 8 bits counter

Design of an 8 bits counter

Adder

A = Increment = 1

B

OUTPUT

We have a infinite loop (combinatorial loop) !!

We need a way to save the previous result and slow down the
counter.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 9

Digital Design – 8 bits counter

Design of an 8 bits counter

We need a way to save the previous result (a register) and
slow down the counter (a clock).

Adder

A = Increment = 1

B

OUTPUT

CLK

Q D

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 10

Digital Design – Base elements

Hardware consist of a few simple building blocks

1. Combinatorial
▶ “Instant” state changes, e.g.:

Classical gates (especially NAND & NOR)

Multiplexer (MUX)

2. Synchronous
▶ “Clocked” state changes, e.g.:

Flip Flop (e.g. D-FF, register)

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 11

Digital Design – LUT

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

ADDR DATA
000 0
001 0
010 0
011 1
100 0
101 1
110 0
111 1

A0

A1

A2

DATAROM
(LUT)

=

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 12

Anatomy of FPGAs - CLB

FPGA are made of Configurable Logic Block (CLB)

(Also “logic cell” or “logic element”)

▶ LUT configuration is flexible

▶ D-type flip-flops configuration is flexible

▶ Flip-flops can take input from outside the

CLB or from the LUT

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Simplified example CLB with one
4-input LUT and one flip-flop

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 13

Anatomy of FPGAs - SLICE example (Xilinx)

LUT
Flip-flops

ug474_7series_CLB.pdf

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 14

Anatomy of FPGAs - Matrix

▶ CLB: Configurable Logic Block

▶ PIC: Programmable Interconnect

▶ IOB: Input-Output Block [1]

▶ Clock Management [2]

▶ Hardened Cores

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

▶ Programming a FPGA is configuring its interconnection matrix and basic blocks (IOB, CLB,...)

[1] ug471_7series_SelectIO.pdf
[2] ug472_7series_Clocking.pdf

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 15

Anatomy of FPGAs - Hardened cores

Hardened Cores (Also called “IP cores”)

Specialized tasks (e.g. multiplication) take up a lot of logic cells

Hardened cores in silicon for more effective use of resources

Typical cores found in modern FPGAs:

▶ Memory (Block RAM [1])

▶ DSP blocks

▶ Clocking (Programmable PLL)

▶ Communication interfaces (e.g. PCIe)

▶ Serializer/Deserializer (SerDes)

▶ CPU

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Exemplary DSP block with multiplier,
accumulator and pipeline stages

[1] ug473_7Series_Memory_Resources.pdf

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 16

Anatomy of FPGAs - Classical Design Flow

▶ Create an FPGA design is:

● Describing the interface between the FPGA and the electronic board
→ Configuration of IOB

● Describing the modules (Adder, Multiplier, CPU, FFT,etc…) and how to
connect them together.

● Transforming this description (RTL) in a machine description called
bitstream (LUT’s configuration, Interconnection Matrix’s configuration,
etc…)
→ Configuration of LUTs, PIC

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 17

Anatomy of FPGAs - Classical Design Flow

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

▶ Functional description
▶ Interface description
▶ Behavioral Simulation

▶ Synthesis tool converts hardware
description into netlist (building
blocks and interconnect)

▶ Can perform logic optimization
Find best location of primitives for
all elements in netlist

Generating bitstream for direct
FPGA programming or for
external memory configuration

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 18

Anatomy of FPGAs - Classical Design Flow

Bitstream

synthesis

P&R

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 19

Anatomy of FPGAs - What we’ve learnt

▶ FPGA are made of configurable logic blocks and dedicated
blocks surrounded by I/Os, interconnected by a switch
matrix

▶ Programming the FPGA is basically writing values into LUTs
and configuring the interconnection matrix

▶ The hardware description is translated into a netlist by the
synthesizer

▶ The P&R finds the best locations for the primitives and
interconnects the components

▶ Software / CPU specify a sequence of instructions

▶ HDL / FGPA describe structure and behavior of digital components

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 20

Anatomy of FPGAs - FPGA vs CPLD

▶ Configuration is volatile. Bitstream is
stored in an external memory (SPI
flash) and loaded.
→Delay of several milliseconds at
power ON.

▶ Variety of on-die dedicated
hardware such as Block RAM, DSP
blocks, PLL, DCMs, Memory
Controllers, Multi-Gigabit
Transceivers

▶ PCB cost much higher (BGA,
multiple voltage rails, external SPI
flash)

▶ Bitstream is stored in flash memory.
→Instant ON

▶ Very small amount of logic resources

▶ No on-die hard IPs available (RAM, PLL,…)

▶ Only one voltage rail

▶ Available in TQFP package

FPGA CPLD

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 21

Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 22

Flip-Flops - Description

▶ There are a few different types of flip-flops (JK, T, D) but the one that is used most frequently is
the D Flip-Flop.

▶ Sequential logic operates on the transitions of a clock. When a Flip-Flop sees a rising edge of the
clock, it registers (copy and hold) the data from the Input D to the Output Q.

▶ Flip-flops are the main components in an FPGA that are used to keep the state inside of the chip.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 23

Flip-Flops – Timing considerations

▶ Because of the construction of a flip-flop [1], the input must be held steady in a period around the
rising edge of the clock.

▶ Setup time is the minimum amount of time the data input should be held steady before the clock
event, so that the data is reliably sampled by the clock.

▶ Hold time is the minimum amount of time the data input should be held steady after the clock
event, so that the data is reliably sampled by the clock.

[1] https://www.edn.com/understanding-the-basics-of-setup-and-hold-time/

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 24

Flip-Flops – Metastability

▶ If setup and hold time are not respected, flip-flops are subject to a problem called
metastability
▶ The result is that the output may behave unpredictably, taking many times longer than
normal to settle to one state or the other, or even oscillating several times before settling.

https://youtu.be/5PRuPVIjEcs

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 25

Three main reasons for metastability problem (1/3)

▶ An external signal (user input) is read inside the FPGA:

D Q

FPGAOUTSIDE

CLK

D doesn’t change during the
aperture.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 26

Three main reasons for metastability problem (1/3)

D Q

FPGAOUTSIDE

CLK

D changes during the aperture→Metastability

▶ An external signal (user input) is read inside the FPGA:

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 27

Three main reasons for metastability problem (2/3)

▶ Too much logic (delay) between flip-flops (setup violation):

t s t h t s t h

CLK

Q-FF1

D-FF2

D-FF1

In this case, the delay
induced by the logic is short
enough

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 28

Three main reasons for metastability problem (2/3)

▶ Too much logic (delay) between flip-flops (setup violation):

t s t h t s t h

CLK

Q-FF1

D-FF2

D-FF1

In this case, the delay
induced by the logic is too
long

Setup violation

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 29

Three main reasons for metastability problem (3/3)

▶ Multiple clock domains

CLKA

A

IN
t s t h

CLKB

Because clk_A and clk_B are asynchronous, A can change anytime with regards to clk_B rising edge.

Setup violation

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 30

Who is responsible ?

▶ You are responsible for this. Designers must prevent timing
problems:

● External asynchronous signals must be handled properly with
synchronizers,

● when using multiple clock domains, use proper clock domain
crossing (CDC) circuits,

● look at static timing analysis report from your synthesis tool and
take care (at least evaluate) of every (most) warnings.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 31

Synchronizer

▶ Use a sequence of registers in the destination clock domain
to resynchronize the signal to the new clock domain.
▶ Allows additional time for a potentially metastable signal to
resolve to a known value before the signal is used in the rest
of the design.

https://trilobyte.com/pdf/golson_snug14.pdf
Must be kept close each other

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 32

Clock Domain Crossing

▶ Used when transferring datas (busses) across clock domain
boundaries.

▶ Two methods:
● Control based data synchronizers
● FIFO based data synchronizers

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 33

Control based data synchronizers

▶ The enable signal is responsible to inform the receiving
domain that data is stable and ready to be captured.

▶ Control based data synchronizer has limited bandwidth.

D Q D Q

D Q
D Q

D Q

D Q

D Q

Do Di

En

En’

En’

Do

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 34

FIFO based data synchronizers

▶ Data is pushed into the FIFO with transmitter clock and
pulled out from FIFO with receiver clock.

write_clock

write_data

write_full

write

read_clock

read_data

read_empty

read

Asynchronous
FIFO

wr clock domain rd clock domain

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 35

Static Timing Analysis

▶ Performed by the implementation tool
▶ Needs constraints (SDC files)
▶ Verify every path and detect potential failures at every corners
▶ Gives Fmax

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 36

Static Timing Analysis

▶ Performed by the implementation tool
▶ Needs constraints (SDC files)
▶ Verify every path and detect potential failures at every corners
▶ Gives Fmax

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 37

Static Timing Analysis

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 38

Static Timing Analysis

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 39

Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 40

Agenda

▶ Migen: introduction and workshops
● Concepts, Modules and signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 41

What is Migen

▶ An alternative HDL based on Python

▶ FHDL is a Python DSL (Domain Specific Language) defined by Migen and
allow generating Verilog or instantiating Verilog/VHDL from Python code

▶ It basically uses Python to create a list of combinatorial and
synchronous assignments and generate a Verilog file from these
assignments.

▶ Migen has an integrated simulator that allows test benches to be written
in Python

https://m-labs.hk/gateware/migen

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 42

Migen – Concepts

▶ A module (as in verilog) is a block containing a functional
description (Migen code) that uses input/outputs

WRITE

BTN

LEDSMyModule

CLOCK

FPGA

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 43

Migen – Concepts

▶ Migen uses Python classes
▶ The most important class is Module
▶ A module has input / output signals and parameters
▶ The direction of signals in the interface is not explicit

WRITE

BTN

LEDS
MyModule

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 44

Migen – Concepts

▶ Interfaces of modules are defined by attributes
▶ All attributes with the type Signal() are considered
interfaces of the module
▶ In our case:

write

btn

leds
MyModule

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 45

Migen – Concepts

▶ Every signal assignment is either:

- combinatorial (continuous assignments)

- synchronous (at the edge of the clock signal)

▶ Module() has a sync and a comb attributes (lists)

▶ Assignment are added to the chosen type using the in-
place addition operation (+=)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 46

Migen – Concepts

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 47

Migen – Signal

▶ Signal object represents a value that is expected to change
in a circuit. It does exactly what Verilog’s “wire” and “reg” and
VHDL’s “signal” do.
▶ They are assigned using the eq() method

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 48

Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 49

Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 50

Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 51

Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 52

Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 53

Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 54

Migen – Attributes of Modules

▶ comb → a list of combinatorial assignments
▶ sync → a list of synchronous assignments
▶ submodules → a list of modules used by this module
▶ specials → a list of Platform specific modules, Verilog
instances, memories,…

▶ clock_domains → clock domains used by this module

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 55

Migen – Attributes of Modules: comb

▶ comb → a list of combinatorial assignments

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 56

Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 57

Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

?

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 58

Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

test_b == 0, set a to 0

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 59

Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

a is now 0, a == 0 is true
so set out to 1

test_b == 0, set a to 0

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 60

Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

test_b == 0, set a to 0

a is now 0, a == 0 is true
so set out to 1

Finally, out is now equal to 1

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 61

Migen – Attributes of Modules: submodules

▶ submodules → a list of modules used by this module

▶ Can be named (self.submodules.m2 = m2)

We have access to
the interface of m2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 62

Migen – Attributes of Modules: special

▶ special → a list of Platform specific modules, Verilog
instances, memories,...

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 63

Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 64

Migen – Combinatorial example

WRITE

BTN

LEDSM1

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 65

Migen – Combinatorial example

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 66

Migen – Synchronous example

WRITE

BTN

LEDSM1

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 67

Migen – Synchronous example

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 68

Migen – Synchronous example

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 69

Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 70

Migen – IF / ELSE

▶ Migen doesn’t use Python’s if/else.
▶ If is implemented as a Class. Else and Elif are methods.
▶ Assignments under If are separated by comas
▶ Can be used in comb or sync blocks

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 71

Migen – FSM

▶ Finite State Machine is a way to implement sequential
execution
▶ FSM() is a module, it needs to be added to submodules
▶ States are defined with fsm.act
▶ Assignments are separated by a coma

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 72

Migen – FSM

▶ NextState() is used to move to another state

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 73

Migen – FSM

▶ NextValue(a, value) is used make a synchronous
assignment. It is equivalent to self.sync += a.eq(value)
▶ The signal keep it’s value outside the state it has been
assigned

Coming from “WAIT”,
a is equal to 5

a will be equal to 5
on the next clock
cycle

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 74

This is equivalent to
this (pseudo code)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 75

Migen – FSM

▶ Direct assignment .eq() is used make a combinatorial
assignment. It is equivalent to self.comb += a.eq(value)

▶ a is equal to 5 when in “START” state and 0 in other states

a is equal to 5 as
long as we are in this
state

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 76

Migen – FSM

This is equivalent to
this (pseudo code)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 77

Migen - Libraries

Migen has a library (genlib) with most of the base elements
required to digital logic:

● Records (group signals together with direction),
● FSM (Finite State Machine),
● Clock Domain Crossing,
● Memory,
● Instance (reuse Verilog/VHDL),
● FIFO,
● ...

Most of the useful functions are grouped in the Migen
Cheatsheet

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 78

Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 79

Migen/LiteX – Minimum project requirement

▶ Declare IO resources
▶ Choose a platform and gives it the IO list
▶ Request platform resources (IOs)
▶ Assign requested resources to Module’s interface
▶ Add timing constraints
▶ Let the platform build system do its job (build the
bitstream)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 80

Migen/LiteX – IO resources

▶ Declare IO resources (as a python list of tuples)

▶ Look all available options in the documentation

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 81

Migen/LiteX – IO resources

▶ Declare IO resources (as a python list of tuples)

▶ Look all available options in the documentation
No documentation (for now)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 82

Migen/LiteX – Platform

▶ Choose a platform and pass it the IO list

▶ Litex provides infrastructure for:
● altera,
● efinix,
● gowin,
● lattice,
● microsemi,
● quicklogic,
● xilinx

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 83

Migen/LiteX – Request resources

▶ Request platform resources (IOs)

▶ Returns Signal() from platform resources

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 84

Migen/LiteX – Minimum project code

▶ Assign requested resources to Module’s interface

Once requested, signals
can be used in the
design

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 85

Migen/LiteX – Minimum project code

▶ Assign requested resources to Module’s interface
cd_sys is mandatory. At
some point it has to be
created

The clock signal has to
be assigned

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 86

Migen/LiteX – Minimum project code

▶ Assign requested resources to Module’s interface

Add and use a module

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 87

Migen/LiteX – Minimum project code

▶ Add timing constraints

This is the requested
clock signal

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 88

Migen/LiteX – Minimum project code

▶ Build the bitstream
Configured platform

Top level Module

Ask LiteX to build the
bitstream

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 89

Migen hands-on

Now, let’s practice !

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 90

Step0 – Led blinker

What you’ll see:

▶ Platform definition
▶ Resources assignment
▶ Submodules
▶ Simulation
▶ Build

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 91

Step1 – Introduction

▶ Addressable LED ring
▶ Control over a single wire
▶ 24 bits per LED

FPGA
BOARD

VCC
GND
DATA

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 92

Step1 – LED protocol

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 93

Step1 – Instructions

▶ Control the first LED

▶ Send 24 “Ones” pulses (equivalent to 0xFFFFFF, white
color)

▶ Test with ./workshop_step1.py sim

▶ gtkwave sim.vcd &

▶ CTRL-R in gtkwave to update waveform after a new
simulation

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 94

Step1 – Tip

 self.sync += [
 if (pulse_cnt < 24) {
 if (pulse_high) {
 output = 1
 cnt_high = cnt_high + 1
 if (cnt_high == t1h) {
 pulse_high = 0
 cnt_high = 0
 }
 } else {
 output = 0
 cnt_low = cnt_low + 1
 if (cnt_low == t1l) {
 pulse_high = 1
 cnt_low = 0
 pulse_cnt = pulse_cnt + 1
 }
 }
 }

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 95

Step1 – Observations

▶ Synchronous assignments take effect on the next cycle
▶ If a signal is assigned multiple time in the same clock cycle,
the last assignment is taken into account

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 96

Step2 – Instructions

▶ Simplify code from step1 using WaitTimer module from migen/genlib

▶ timer = WaitTimer(period)

● Period is expressed in clock cycles
● Two control signals: wait and done

▶ Compute timers period from time and frequency. Pure Python code can be
used here.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 97

Step2 - Observations

▶ Don’t forget to add your module to submodules.
 Migen won’t complain !

▶ Pure Python code can be used in Migen modules
(configuration, genericity,...)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 98

Step3 - Instructions

▶ Use Finite State Machine (FSM) to simplify your code

▶ NextState(state) selects the next state

▶ NextValue(a, b) is equivalent to self.sync += a.eq(b) when the FSM is in the given state.

▶ a.eq(b) is equivalent to self.comb += a.eq(b) when the FSM is in the given state. When
it’s not, a.eq(0)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 99

Step3 - Observations

▶ Direct assignment in FSM are combinatorial

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 100

Step4 - Instructions

▶ Design a RingSerialCtrl module

▶ leds is a 12 bits input, each bit controls a led (on/off)
▶ colors is a 24 bits input that controls the ring color
▶ nb_leds is a parameters to configure how much LED the ring has

Note:
You can access individual bits in a Signal() using Python indexes and slices:

● led[1] is the second bit of led,
● led[-1] is the MSB,
● led[0:3] are the 3 lower bits of led.

RingSerialCtrl

leds(12)

colors(24)

nb_leds

do(1)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 101

Step4 - Tip

fsm.act("RST",
 # wait for trst
 # when done, init variables and go to LED-SHIFT
)
fsm.act("LED-SHIFT",
 # init bit counter
 # increment led_count counter
 # shift led pattern
 # check if led should be lit (assign 0 or color)
 # if next led go to BIT-TEST else RST
)
fsm.act("BIT-TEST",
 # if data(MSB) == 1 go to ONE_SEND
 # else go to ZERO_SEND
 # data = data << 1

)
fsm.act("ZERO-SEND",
 # send bit zero pattern (timer)
 # go to BIT-SHIFT

)
fsm.act("ONE-SEND",
 # send bit one pattern (timer)
 # go to BIT-SHIFT
)
fsm.act("BIT-SHIFT",
 # shift color data
 # check if 24 bits sent
 # if yes go to LED-SHIFT
 # else go to BIT-TEST
)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 102

Step4 - Observations

▶ You can access individual bits in a Signal using Python indexes
and slices:

● led[1] is the second bit of leds,
● led[-1] is the MSB,
● led[0:3] are the 3 lower leds bits. Bit 3 is excluded !

Different with V*HDL where bit vectors are represented from MSB
to LSB:

● my_vhdl_signal(11 downto 0)
● my_verilog_signal[11:0]

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 103

Step5 - Instructions

▶ Create a new module RingControl to control RingSerialCtrl and
make LEDs spins

▶ Put both modules in a separate file named ring.py

Bonus1:

▶ Use Array([a, b, …]) to light LED following the pattern defined in
this array of values

Bonus2:

▶ Add a build time option to use simple LED spin or array mode
(using pure Python syntax)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 104

Step5 - Tips

Python statement can be used inside Modules:

if (something == True):
 self.comb += out.eq(test1)
else:
 self.comb += out.eq(test2)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 105

Step5 - Observation

▶ Organize your files as much as possible

▶ Use Python to configure your design

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 106

Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops

● Records
● Simulation

▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 107

Migen/LiteX – Records

▶ Records are structures of Signal() objects
▶ Records are described with a layout (list of tuples)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 108

Migen/LiteX – Records

▶ IO Resources can be Records (often, they are)
▶ Subsignal is used

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 109

Migen/LiteX – Records

▶ Signals of a Record are attributes of it
▶ Testing attributes can be part of the configuration

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 110

Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops

● Records
● Simulation

▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 111

Migen/LiteX – Simulation

Generates
Inputs

(generator)
Module

(DUT, Device Under Test)
Check
outputs

Generates
Inputs

(generator)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 112

Migen/LiteX – Simulation

▶ Migen has an integrated simulator
▶ Test benches (generators) execute concurrently
▶ Use yield to communicate with the simulator. There are four basic patterns:

● Reads: state of a signal can be read using (yield signal)
● Writes: state of a signal after next clock is set with yield signal.eq(value)
● Clocking: simulation can be advanced one clock cycle using yield
● Composition: control can be transferred to another function using yield from run_other()

▶ Run with run_simulation(dut, bench) where dut is the module under test and
bench are the generators functions.
▶ Can generate a VCD file containing a dump of the signals inside dut

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 113

Migen/LiteX – Simulation

Module under test

Test Bench (generator)

Simulation

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 114

Migen/LiteX – Simulation

Module under test

subroutine

Simulation

Test Bench (generator)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 115

Migen/LiteX – Simulation

▶ Multiple generators can run in parallel
▶ Can be multiple clock domains
▶ Don’t forget yield, yield from (Migen won’t complain)
▶ Signals must not be driven concurrently

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 116

Step6 – Write a testbench for RingSerialCtrl

What you’ll learn:
▶ Use generators
▶ Write complex test benches

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 117

Step6 – Write a testbench for RingSerialCtrl

▶ Write a generator to set a random color to a random LED
▶ Write a generator to detect the timeout condition
▶ Write a generator to print which value is set on each LED

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 118

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ Litex: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 119

System On Chip - SoC

CPU

Instruction
cache

Data
cache

SRAM

ROM

External
Memory Interface

Peripherals

C
ro

ss
ba

r

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 120

System On Chip - SoC

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 121

System On Chip - SoC

CPU

SRAM

ROM

S
oC

 in
te

rc
on

ne
ct

io
n

bu
s

32
-b

it
sl

av
e

32
-b

it
sl

av
e

External
Memory Interface

64
-b

it
sl

av
e

32
-b

it
sl

av
e

32
-b

it
m

as
te

r

PERIPH1

PERIPH2
DMA

32
-b

it
m

as
te

r
32

-b
it

m
as

te
r

Instruction
cache

Data
cache

0x10000000

0x10080000

0x40000000

0x20000000

0x20001000

▶ Bus adaptation (width, type)
▶ Arbitration
▶ Address mapping

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 122

What is LiteX

LiteX
16 Softcores
serv, mor1kx,
vexriscv,picorv32...

Migen
Uses
Extends

build

altera
anlogic
efinix
gowin
lattice
microsemi
quicklogic
xilinx

tools soc

cores
interconnect
integration
software
doc

provides

supports

11 Open sources IP
litepcie, litedram, liteiclink,
liteeth, litesdcard, litevideo,
litescope, litesata, litejesd204b

litehyperbus, litespi

supports

104 Supported boards
- Platform definition
- Target example

supports

server
term
client
...

gpio
i2s
spi
pwm
led
tmds
...

litex-boards

platforms
targets

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 123

LiteX’s key features

▶ Extends Migen with new concepts and libraries

▶ Build and configure SoC easily

● Scale from no CPU to Linux capable SoC
● Open sources IP
● Easy interconnection of modules
● Flexible SoC configuration
● Unified build system across vendors

▶ Portability (abstraction of technology implementation)
▶ Debug infrastructure with LiteX Server, LiteScope and other tools
▶ BIOS with command line interface for system bring-up

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 124

LiteX – Busses

▶ SoC interconnections are made with Wishbone buses (open sources
standard). It can be configured to use AXI-Lite (AXI is a royalty free
protocol available from ARM)

▶ CSR (Control and Status Registers) bus is a simple bus protocol used
to handle low bandwidth transactions

▶ Litex streams is an interface to connect streaming components (data
flow exchange)

▶ Bridges are available to interconnect all supported bus

▶ The CSR bus is automatically bridged to the Wishbone address space

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 125

LiteX – SoC classes

SoC(Module)→LiteXSoC→SoCCore→SoCMini→LiteXCore

▶ SoC is where busses, RAM, ROM, CPU and timer are added
(via methods) as submodules,

▶ LiteXSoc has a set of methods to add features to SoCCore:
add_identifier, add_uart, add_sdram, add_ethernet,…

▶ SoCCore takes a set of arguments that defines a SoC based
on LiteXSoc and provides methods to extends this SoC.
This is the class that you might use to create a SoC.

▶ SoCMini is a version of SoCCore with minimum features
enabled (by default: no CPU, no RAM, no UART, no TIMER)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 126

LiteX – Example

UARTBoneUART Wishbone
Crossbar

WB master

WB↔CSR
bridge Ident

ledring

ctrl

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 127

LiteX – SoCCore

▶ Configuration of core functions with arguments

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 128

LiteX – SoCCore

▶ Add peripherals with methods from SoCCore:

● add_csr
● add_wb_master
● add_wb_slave

▶ Add peripherals with methods from LiteXSoc:
● add_spi_flash
● add_sdram
● add_ethernet
● ….

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 129

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ Litex: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ Litex: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 130

LiteX – SDRAM

▶ Add DRAM memory to the system
▶ Use LiteDRAM and supports SDR, DDR2, DDR3, DDR4 and LPDDR
▶ Needs a PHY module
▶ Signals have to be named a certain way

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 131

LiteX – Ethernet

▶ Add Ethernet to the system
▶ Use LiteETH and supports MII, RMII, GMII, RGMII, 1000BASEX, XGMII
▶ Needs a PHY module
▶ Signals have to be named a certain way

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 132

LiteX – Others

▶ add_spi_flash
▶ add_spi_sdcard
▶ add_sdcard
▶ add_sata
▶ add_pcie
▶ add_video_colorbars
▶ add_video_terminal
▶ add_video_framebuffer

▶ Once again, there is no documentation :(

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 133

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 134

LiteX – Add a SoC to the project

▶ Create a class that inherits from SoCCore or SoCMini
▶ Set parameters
▶ Don’t forget to add a .crg submodule !

▶ All other submodules will be added in this class

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 135

LiteX – Build a SoC

▶ Add your own arguments (used locally)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 136

LiteX – Build a SoC

▶ Builder has a set of arguments

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 137

LiteX – Builder arguments

▶ --csr-csv generates a file with CSR addresses and is
used by all LiteX tools

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 138

LiteX – Build a SoC

▶ SoCCore has a set of arguments

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 139

LiteX – SoCCore arguments

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 140

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 141

LiteX – Software, BIOS

▶ Built-in BIOS with low level
commands to test the SoC

▶ Uses picolibc

▶ Several boot sources (RAM,
flash, ROM, serial, tftp, sata,
sdcard)

▶ Not a full featured bootloader.
Think of a first stage bootloader.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 142

LiteX – Software, baremetal

▶ Build your own baremetal application using provided
software libraries (spi, fatfs, sata, ethernet,...)

▶ BIOS can load the application

▶ Application can be loaded in ROM during build:

--integrated-rom-init=”myfile.bin”

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 143

LiteX – Software, generated files

▶ csr.h provides helper functions and definitions for all CSR peripherals

▶ git.h provides the git hash of the Litex version used to build the SoC

▶ mem.h definition of memory map as C defines

▶ output_format.ld and regions.ld are for the linker script

▶ soc.h provides the configuration of the SoC

▶ variables.mak are used by Makefiles

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 144

LiteX – Software, linker script

▶ Memory regions defined in generated/regions.ld

▶ An example of linker script can be found in
litex/soc/software/demo

▶ In general, your program will be placed in the main RAM
before execution (by the BIOS)

▶ Program can also replace the BIOS in rom

▶ Need to adapt the linker script

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 145

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 146

LiteX - Tools

▶ litex_server →proxy between tools and SoC
 interconnection crossbar

▶ litex_term →terminal emulator with SFL (Serial Flash
Loader) capabilities

▶ litex_cli →simple read/write access to SoC
 interconnection crossbar

▶ litescope_cli →control tool for an embedded logic
 analyzer

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 147

LiteX – Tools, litex_server

▶ Allows simultaneous access to the SoC interconnect from tools
▶ Needs a bridge (UART, Ethernet, PCIe)
▶ Uses Etherbone protocol (“standardized” wishbone over IP)

UARTBoneUART

Wishbone
Crossbar

WB
master

SoC

litex_server

litexscope_cli

litex_cli

my_cli

HOST

litex_term UART
(crossover)CPU

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 148

LiteX – Tools, litex_term

▶ Can interface the Serial Flash Loader (SFL) of the BIOS
▶ Only binary files (no elf)
▶ Default loading address is 0x40000000 (main_ram)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 149

LiteX – Tools, litex_cli

▶ Can read/write to arbitrary address
▶ Knows SoC registers (read from csr.csv file)
▶ Needs to connect to litex_server

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 150

LiteX– Tools, litescope_cli

▶ litescope can be integrated to the design to observe internal
signals
▶ litescope_cli can control litescope through litex_server (trigger)
▶ Needs analyzer.csv generated during build

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 151

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 152

LiteX – Workshop / Lessons

step7 – Build a simple SoC

step8 – Add CSR to RingControl and use litex_cli to control the leds

step9 – Add add use LiteScope and litescope_cli

step10 – Write a C program to control the leds and run it from the BIOS then
run it from ROM

step11 – Add a PLL and clock the RingControl faster than the system

step12 – Add a wishbone interface to RingControl and use it

Now, let’s practice !

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 153

Step7 – Build a SoC

What you’ll see:

▶ Derive and configure a SoC class

▶ Setup argument for local usage

▶ Use Build class

▶ Use of programmer

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 154

Step7 – Build a SoC

▶ Use --help to see all available arguments

▶ Try to build without a crg

▶ Load the bitstream and run litex_server and use litex_cli
to reads the available registers and the SoC’s identifier

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 155

Step7 – Observations

▶ self.submodule.crg is mandatory

▶ Look at build logs

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 156

Step8 – Add CSR

What you’ll learn:

▶ What CSR are

▶ Add and use CSR in a module

▶ Read/Write CSR from litex_cli

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 157

Step8 – What CSR are

▶ Control and Status Registers

▶ Registers placed on a simple bus accessible
from Wishbone (bridged)

▶ Not aimed to do fast data transfers

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 158

Step8 – How to use CSR

▶ Inherit from AutoCSR

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 159

Step8 – How to use CSR

▶ Inherit from AutoCSR

▶ CSRConstant → Optimized away, values are set in generated software files

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 160

Step8 – How to use CSR

▶ Inherit from AutoCSR

▶ CSRConstant → Optimized away, values are set in generated software files

▶ CSRStorage → Register read/written by the CPU

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 161

Step8 – How to use CSR

▶ Inherit from AutoCSR

▶ CSRConstant → Optimized away, values are set in generated software files

▶ CSRStorage → Register read/written by the CPU

▶ CSRStatus → Register read only from the CPU

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 162

Step8 – How to use CSR

▶ CSRStorage and CSRStatus values must be accessed using
their storage attribute

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 163

Step8 – How to use CSR

▶ CSRStorage and CSRStatus values must be accessed using
their storage attribute

▶ CSRField are structured representation of a CSR

▶ CSRField is a Signal() and can be used directly

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 164

Step8 – How to use CSR

▶ CSR regions must be added to the SoC with add_csr()

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 165

Step8 – Documentation

▶ Documentation can be generated from CSR definition (- -doc)

▶ Fields can improve code readability and documentation

▶ You can add documentation for a module if you inherit from AutoDoc

https://github.com/enjoy-digital/litex/wiki/SoC-Documentation

Example of a generated doc

https://github.com/enjoy-digital/litex/wiki/SoC-Documentation
../../../pCloudDrive/COLLSHADE/01_DEVELOPPEMENT/02_FORMATION/v1.0/html_doc_example/index.html

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 166

Step8 – Let’s get to work

▶ Add a CSR to RingControl to control LED’s color
▶ Add RingControl to the SoC
▶ Use litex_cli to change the color of the LEDs

Bonus:
▶ Add a command line argument to control the mode at
build time

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 167

Step8 – Observation

▶ submodules must be named to have CSR
▶ Default csr paging is 0x800 (2048 bytes), 32 bits, big
endian and mapped at address 0xF0000000

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 168

Step9 – Add / configure / use Litescope

What you’ll learn:

▶ Add Litescope to your design

▶ Use litescope_cli to configure trigger and dump
waveforms

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 169

Step9 – Add / configure / use Litescope

▶ Needs a bridge to the SoC (uartbone, etherbone,…)

▶ Signals to be observed need to be listed in the source
code (add accessible from the top level module)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 170

Step9 – Add / configure / use Litescope

▶ Samples are stored in embedded block rams. Resources
are limited !

▶ depth configures how many samples are captured

▶ clock_domain tells which clock domain is used

▶ The current configuration is stored in analyzer.csv

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 171

Step9 – Add / configure / use Litescope

▶ litex_server needs to be started

▶ litescope_cli is used to control the capture

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 172

Step9 – Let’s get to work

▶ Add a Litescope instance

▶ Configure Litescope to visualize:

● bit_count and trst_timer.wait in RingSerialCtrl,
● Index in RingControl

▶ Triggers on trst_timer.wait rising edge
▶ Visualize the result

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 173

Step9 – Observation

▶ Signals that you want to watch must be part of the
Module’s interface

▶ Don’t forget to add self.add_csr("analyzer")

▶ Several instances of LiteScopeAnalyzer can be used at
the same time (e.g several clock domains)

Each litescope_cli needs to read the correct (- -csv)
analyzer CSV file

https://github.com/enjoy-digital/litex/wiki/Use-LiteScope-To-Debug-A-SoC

https://github.com/enjoy-digital/litex/wiki/Use-LiteScope-To-Debug-A-SoC

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 174

Step10 – Write a baremetal software

What you’ll learn:

▶ Create a baremetal software for your SoC

▶ Download and run your software using the litex_term

▶ Embedded your software in ROM

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 175

Step10 – Write a baremetal software

▶ Need to use SoCCore (was SoCMini until now)

▶ We need some RAM since the code will be upload from
the host (in case we don’t replace the BIOS in ROM)

▶ Write a makefile that uses the generated variables from
the SoC definition

▶ Provide a linker script

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 176

Step10 – Workshop

▶ Build the SoC with some integrated main ram

▶ Complete the provided main.c to control the color of the LEDs

▶ Load and run the program using litex_term

▶ Build the program to target the ROM

▶ Initialize the ROM with your program and load the bitstream

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 177

Step10 – Workshop

▶ Booting from ROM require a change in the Linker script

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 178

Step11 – PLL and ClockDomains

What you’ll learn:

▶ What is a ClockDomain

▶ Use a PLL

▶ Use ClockDomainsRenamer

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 179

Migen – Attributes of Modules: clock_domains

▶ clock_domains → clock domains used by this module
▶ Clock domains object contains:

● a the name for the clock domain
● a clock signal
● an optional reset signal

▶ Default clock domain is sys (implicit)
▶ A module can have more than

one clock domain

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 180

Migen – Attributes of Modules: clock_domains

Create a new clock domain and
assign a clock signal

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 181

Migen – Attributes of Modules: clock_domains

This assignment takes place in the
“pix” clock domain

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 182

Migen – Attributes of Modules: clock_domains

Assignment to cd_sys is implicit

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 183

Migen – Attributes of Modules: clock_domains

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 184

Step11 – ClockDomainsRenamer

▶ Change the clock domain of a module

▶ Used while adding a submodule

▶ Can change several clock domains at the same time

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 185

Step11 – ClockDomainsRenamer - Example

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 186

Step11 – ClockDomainsRenamer

Usage:

self.submodules.descrambler = Descrambler(“gtp0_rx”)

And:

sync = getattr(self.sync, clock_domain)

Is equivalent to:

self.sync.gtp0_rx += [
...

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 187

Step11 – ClockDomainsRenamer

▶ CSR are always in cd_sys

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 188

Step11 – PLL

▶ Phase Locked Loop

▶ One clock input, several clock output

▶ Clock multiplication, phase shift

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 189

Step11 – PLL

▶ PLL code is in litex→soc→cores→clock

▶ Constructor can be slightly different between platforms

▶ You still need to get an idea what your PLL is capable of

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 190

Step11 – Workshop

PLL

100MHz

cd_sys

cd_led

60MHz

50MHz RingControl

SoC

▶ Add a PLL and clock the design as shown here after

▶ Change the color of the LEDs using the BIOS (there is no
uart_bone anymore)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 191

Step11 – Observations

▶ Reset signal of clock domains is automatically handled

▶ CSR are in sys clock domain

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 192

Step12 – Use the wishbone bus

What you’ll learn:

▶ How Wishbone works

▶ Add and use a wishbone slave

▶ Add and use a wishbone master

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 193

Step12 – Wishbone description

▶ Open source hardware bus definition

▶ 8 – 64 bits data bus

▶ Supports single transfers and bursts

▶ Two version are used: B3 and B4

▶ B4 introduces pipelined transfers

▶ LiteX uses the Wishbone B3

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

MASTER SLAVE

https://cdn.opencores.org/downloads/wbspec_b3.pdf

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 194

Step12 – Wishbone simple read

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

MASTER SLAVE
CLK

CYC

STB

ACK

ADR VALID

DAT_R VALID

WE

▶ ERR can finish a cycle (like ACK)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 195

Step12 – Wishbone simple write

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

MASTER SLAVE
CLK

CYC

STB

ACK

ADR VALID

DAT_W VALID

WE

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 196

Step12 – Wishbone wait states

CLK

CYC

STB

ACK

ADR N

DAT_W VALID

WE

N+1

VALID

WAIT STATE
(MASTER)

WAIT STATE
(SLAVE)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 197

Step12 – Wishbone SEL

▶ Indicates where valid data is on the bus

▶ Used when a granularity smaller than the bus width is
needed (write a 8-bit value on a 32-bit bus)

DAT_W 0x11223344

SEL 0b0010

ADR 0x20001000

▶ In this example, 0x33 is written at address 0x20001001

▶ Depends on ENDIANNESS

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 198

Step12 – Wishbone burst cycles

▶ Increase bandwidth (1 transfer per cycle)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 199

Step12 – Wishbone burst cycles

▶ Use CTI (Cycle Type Idenfier)
▶ Use BTE (Burst Type Extension)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 200

Step12 – Wishbone burst cycles

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 201

Step12 – Use Wishbone slave with LiteX

▶ add_slave method from SoCCore

▶ IO Regions are non-cacheable

▶ Origin can be specified

▶ Address to the module is adr[2:32] and is not relative to
the base address

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 202

Step12 – Exercise

▶ Add a wishbone interface slave to RingControl

▶ Use this bus to control the ring’s color

▶ Use this bus to read a version number

▶ Read and write values from the BIOS

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 203

Step12 – Observation

▶ The address is expressed in 4 bytes words

▶ The address is not relative to the base address of the
module

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 204

Step12bis – Use Wishbone master with LiteX

▶ add_master method from SoCCore

▶ Address from the module is adr[2:32]

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 205

Step12bis – Exercise

▶ A DDR3 controller has been added as main_ram
mapped at address 0x40000000

▶ Add a wishbone master to RingControl

▶ Read LEDs color from the DRAM using the wishbone
master interface

▶ Color will be written to memory from the BIOS

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 206

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

● Streams / workshop
● Usage of Verilog/VHDL modules in LiteX / workshop
● Verilator / workshop

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 207

LiteX – Streams

▶ Streams are groups of signals (Migen’s record)
used to exchange data between Modules
▶ There is no “addresses” on this “bus”
▶ Transfers are from the Source to the Sink
▶ Stream nodes are called Endpoints

CLK

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 208

LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 209

LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid
▶ ready is high when sink is ready to receive

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 210

LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid
▶ ready is high when sink is ready to receive

Sink is not ready.
The Source keeps the current Payload

until Sink is ready again

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 211

LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid

▶ ready is high when sink is ready to receive
▶ first and last mark packets boundaries

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 212

LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid
▶ ready is high when sink is ready to receive
▶ first and last mark packets boundaries
▶ payload is a Record with its own layout, it can change on every
valid/ready transaction

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 213

LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid
▶ ready is high when sink is ready to receive
▶ first and last mark packets boundaries
▶ payload is a Record with its own layout, it can change on every
valid/ready transaction
▶ param is a Record with its own layout, it can evolve at each start of
packet

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 214

LiteX – Streams usage

▶ Streams are Endpoint() classes
▶ Defined from a layout
▶ param_layout is optional
▶ valid, ready, first, last are added automatically

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 215

LiteX – Streams example

Input and output Streams are added to the Module

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 216

LiteX – Streams example

Add a stream FIFO with its own layout

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 217

LiteX – Streams example

connect() is used to connect a sink to a source.
Always use source.connect(sink)

Connect self.source to fifo.sink but don’t
connect valid, ts and error (omit).They will be
controlled in the module.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 218

LiteX – Streams components

▶ stream.SyncFIFO
▶ stream.AsyncFIFO
▶ stream.ClockDomainCrossing
▶ stream.Multiplexer
▶ stream.Demultiplexer
▶ stream.StrideConverter
▶ stream.Pipeline
▶...

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 219

step13 – Streams workshop

What you will learn:
▶ Connect and control sinks / sources
▶ Use Ethernet UDP streamer
▶ Use WishboneDMAWriter

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 220

step13 – Streams workshop

▶ Receive UDP payload and write it in DRAM
▶ Check received payload using the BIOS

PC

netcat -u 192.168.1.98 5678 < test.bin
echo 'test' > /dev/udp/192.168.1.98/5678

litex_server

LiteEthUDPIPCore

LiteEthEtherbone LiteEthUDPStreamer

SRAM WishboneDMAWriter

YourModuleHere

add_etherbone()

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 221

step13 – Streams workshop

▶ The SoC has an etherbone and an LiteEthUDPStreamer
▶ An SRAM memory (sram_udp) is present at 0x20000000
▶ LiteEthUDPStreamer provides a stream from UDP
received frames
▶ WishboneDMAWriter takes a stream (address, data) and
converts it to Wishbone transfers

▶ Write a module to prepare the stream from
LiteEthUDPStreamer to WishboneDMAWriter
▶ See further instructions in the code

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 222

step13 – Obervations

▶ Always use xxx.from.connect(yyy.to)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 223

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

● Streams / workshop
● Usage of Verilog/VHDL modules in LiteX / workshop
● Verilator / workshop

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 224

LiteX – Reuse Verilog/VHDL modules

▶ Verilog/VHDL cores can be integrated to Migen/LiteX
▶ Other description languages (Spinal-HDL, nMigen) can
be reused through Verilog
▶ Migen’s Instance() is used to instantiate the core

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 225

LiteX – Reuse Verilog/VHDL modules

▶ Prefixes are used to specify the type of interface

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 226

LiteX – Reuse Verilog/VHDL modules

▶ LiteX automatically determines the language based on the
file extension

▶ It is possible to pass multiple sources at once

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 227

step14 – Reuse Verilog/VHDL modules

What you will learn:
▶ Use an external verilog core
▶ Use litex_read_verilog

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 228

step14 – Reuse Verilog/VHDL modules

▶ Create StreamAddOne module from stream_adder.v and
add it to the system
▶ Check received payload using the BIOS

PC

netcat -u 192.168.1.20 1200 < test.bin

litex_server

LiteEthUDPIPCore

LiteEthEtherbone LiteEthUDPStreamer

SRAM WishboneDMAWriter S2DMA

stream_adder.v

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 229

step14 – Reuse Verilog/VHDL modules

▶ Use litex_read_verilog to generate a Migen class
from the verilog file

▶ Create a StreamAddOne module with a sink and a
source stream port and connect your stream_adder
inside this module

▶ Insert StreamAddOne between the udp_streamer
and S2DMA

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 230

Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

● Streams / workshop
● Usage of Verilog/VHDL modules in LiteX / workshop
● Verilator / workshop

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 231

LiteX – What is Verilator ?

▶ Verilog / SystemVerilog simulator
▶ Accept only synthesizable structures
▶ Converts Verilog into multithreaded C++ or SystemC model
▶ Generates a .cpp and .h file, the Verilated code
▶ Write a test bench with an instance of the Verilated model
▶ Get an executable that runs the simulation
▶ Very fast

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 232

LiteX – Verilator infrastructure

▶ LiteX provides a Verilator simulation framework
▶ Verilator models for DRAM, SPI Flash, SD-Card
▶ Verilator models for Ethernet and serial (interactive)
▶ Modular conception. Modules can easily be added
▶ litex_sim is a ready to use simulated SoC (with all available
simulated peripherals)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 233

LiteX – Simulation model

▶ System simulation needs model for external interfaces

Two ways:
▶ Write a synthesizable model

Verilated SoC

Synthesizable Verilog

Peripheral
controller

Peripheral
model

No runtime interaction
with the simulation

The simulated peripheral is written in
Migen like any other Module.

Only build time configuration

No user interaction

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 234

LiteX – Simulation model

▶ System simulation needs model for external interfaces

Two ways:
▶ Write a synthesizable model
▶ Write a C++ model

Synthesizable Verilog

Peripheral
controller

Peripheral
model

C++

Runtime interaction with the simulation is possible.
The model can use host’s resources

Host resources

Host

The simulated peripheral is written in
C++ and it will not be part of the
Verilated code

Can use host’s resources

Signals must be present on the top
level of your SoC

Verilated SoC

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 235

LiteX – Writing a model, synthesizable

▶ Writing a model with Migen code is not specific to simulation
▶ The model is synthesizable but resources are not important
▶ In general, fully equivalent to the real interface
▶ See LiteSPIPHYModel in litespi/litespi/phy/model.py

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 236

LiteX – Writing a C++ model

▶ Simulation can be at pins level or interface level

SoC

SPI
controller

SPI
PHY

SPI
device Non simulated configuration

SPI interface
LiteX streams (rx/tx)

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 237

LiteX – Writing a C++ model

▶ Simulation can be at pins level or interface level

SPI device is simulated at
pin level

SPI interface
LiteX streams (rx/tx)

C++

SoC

SPI
controller

SPI
PHY

SPI
Device
model

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 238

C++

SoC

SPI
controller

SPI
Device
model

SPI
PHY

LiteX – Writing a C++ model

▶ Simulation can be at pins level or interface level

SPI device is simulated at
interface level

Easier, faster

LiteX streams (rx/tx)
SPI PHY is just a
pass-through module
to expose the LiteX
streams to the SoC
interface

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 239

LiteX – Writing a C++ model, structure

▶ New modules must be declared during build:

Name of this module.

Will be used to add it to the
simulation.

▶ Must provides and register a struct ext_module_s

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 240

LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Called once during startup

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 241

LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Must provides a user’s defined session
information.

This will be available in other callbacks.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 242

LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

This is where you get and save pointers to
your pads

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 243

LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Called once during the end of simulation

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 244

LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Called every clock cycle

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 245

LiteX – Writing a C++ model, example

Add the module to the list

Definition of the Module

Called by LiteX infrastructure

▶ serial2console is a terminal emulator
▶ Gets input/output from UART to your console
▶ litex/build/sim/core/modules/serial2console/serial2console.c

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 246

LiteX – Writing a C++ model, example

Module added to the simulation

pads

UART pads from the
platform definition.

This UART model use
streams, not UART pins.

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 247

LiteX – Writing a C++ model, example

Allocation of session’s
structure

Get pads from Verilated code

Configuration of the terminal

Close callback is not used

Handle data transfers

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 248

LiteX – Writing a C++ model, example

Get pads from Verilated code

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 249

LiteX – Writing a C++ model, example

session’s data

Called for every interface
passed in add_module +
clocks

session’s data has now a pointer
to control or read each pad

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 250

LiteX – Writing a C++ model, example

Execute on every simulation
cycle

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 251

LiteX – Writing a C++ model, example

Check if we are in a clock’s
rising edge

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 252

LiteX – Writing a C++ model, example

We are always ready to receive
characters

Print a valid data

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 253

LiteX – Writing a C++ model, example

By default, no character is sent

Send any available character

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 254

LiteX – Minimal Verilator simulation

Use SimPlatform

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 255

LiteX – Minimal Verilator simulation

Use your SoC as usual

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 256

LiteX – Minimal Verilator simulation

Add a clocker module to
generate the clock from the
C++ test bench.

self.add_module("clocker",...

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 257

LiteX – Minimal Verilator simulation

Run the simulation with
given parameters

COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 258

step15 – Verilator simulation

What you will learn:
▶ Build a Verilator simulation of the Ring Controller
▶ Use litex_server and every tools on the simulated
system

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115
	Diapo 116
	Diapo 117
	Diapo 118
	Diapo 119
	Diapo 120
	Diapo 121
	Diapo 122
	Diapo 123
	Diapo 124
	Diapo 125
	Diapo 126
	Diapo 127
	Diapo 128
	Diapo 129
	Diapo 130
	Diapo 131
	Diapo 132
	Diapo 133
	Diapo 134
	Diapo 135
	Diapo 136
	Diapo 137
	Diapo 138
	Diapo 139
	Diapo 140
	Diapo 141
	Diapo 142
	Diapo 143
	Diapo 144
	Diapo 145
	Diapo 146
	Diapo 147
	Diapo 148
	Diapo 149
	Diapo 150
	Diapo 151
	Diapo 152
	Diapo 153
	Diapo 154
	Diapo 155
	Diapo 156
	Diapo 157
	Diapo 158
	Diapo 159
	Diapo 160
	Diapo 161
	Diapo 162
	Diapo 163
	Diapo 164
	Diapo 165
	Diapo 166
	Diapo 167
	Diapo 168
	Diapo 169
	Diapo 170
	Diapo 171
	Diapo 172
	Diapo 173
	Diapo 174
	Diapo 175
	Diapo 176
	Diapo 177
	Diapo 178
	Diapo 179
	Diapo 180
	Diapo 181
	Diapo 182
	Diapo 183
	Diapo 184
	Diapo 185
	Diapo 186
	Diapo 187
	Diapo 188
	Diapo 189
	Diapo 190
	Diapo 191
	Diapo 192
	Diapo 193
	Diapo 194
	Diapo 195
	Diapo 196
	Diapo 197
	Diapo 198
	Diapo 199
	Diapo 200
	Diapo 201
	Diapo 202
	Diapo 203
	Diapo 204
	Diapo 205
	Diapo 206
	Diapo 207
	Diapo 208
	Diapo 209
	Diapo 210
	Diapo 211
	Diapo 212
	Diapo 213
	Diapo 214
	Diapo 215
	Diapo 216
	Diapo 217
	Diapo 218
	Diapo 219
	Diapo 220
	Diapo 221
	Diapo 222
	Diapo 223
	Diapo 224
	Diapo 225
	Diapo 226
	Diapo 227
	Diapo 228
	Diapo 229
	Diapo 230
	Diapo 231
	Diapo 232
	Diapo 233
	Diapo 234
	Diapo 235
	Diapo 236
	Diapo 237
	Diapo 238
	Diapo 239
	Diapo 240
	Diapo 241
	Diapo 242
	Diapo 243
	Diapo 244
	Diapo 245
	Diapo 246
	Diapo 247
	Diapo 248
	Diapo 249
	Diapo 250
	Diapo 251
	Diapo 252
	Diapo 253
	Diapo 254
	Diapo 255
	Diapo 256
	Diapo 257
	Diapo 258

