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What are we going to talk about ?

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics
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Digital Design – Base elements

Hardware consist of a few simple building blocks

1. Combinatorial
▶ “Instant” state changes, e.g.:

Classical gates (especially NAND & NOR)

Multiplexer (MUX)

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019
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Digital Design – Truth table

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Digital Design – 8 bits adder

Design of an 8 bits adder
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Digital Design – 8 bits counter

Design of an 8 bits counter

Adder

A

B

OUTPUT
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Digital Design – 8 bits counter

Design of an 8 bits counter

Adder

A = Increment = 1

B

OUTPUT
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Digital Design – 8 bits counter

Design of an 8 bits counter

Adder

A = Increment = 1

B

OUTPUT

We have a infinite loop (combinatorial loop) !!

We need a way to save the previous result and slow down the 
counter.
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Digital Design – 8 bits counter

Design of an 8 bits counter

We need a way to save the previous result (a register) and 
slow down the counter (a clock).

Adder

A = Increment = 1

B

OUTPUT

CLK

Q D
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Digital Design – Base elements

Hardware consist of a few simple building blocks

1. Combinatorial
▶ “Instant” state changes, e.g.:

Classical gates (especially NAND & NOR)

Multiplexer (MUX)

2. Synchronous
▶ “Clocked” state changes, e.g.:

Flip Flop (e.g. D-FF, register)

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019
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Digital Design – LUT

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

ADDR DATA
000 0
001 0
010 0
011 1
100 0
101 1
110 0
111 1

A0

A1

A2

DATAROM
(LUT)

=
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Anatomy of FPGAs - CLB

FPGA are made of Configurable Logic Block (CLB)

(Also “logic cell” or “logic element”)

▶ LUT configuration is flexible

▶ D-type flip-flops configuration is flexible

▶ Flip-flops can take input from outside the

CLB or from the LUT

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Simplified example CLB with one
4-input LUT and one flip-flop
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Anatomy of FPGAs  - SLICE example (Xilinx)

LUT
Flip-flops

ug474_7series_CLB.pdf
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Anatomy of FPGAs  - Matrix

▶ CLB: Configurable Logic Block

▶ PIC: Programmable Interconnect

▶ IOB: Input-Output Block [1]

▶ Clock Management [2]

▶ Hardened Cores

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

▶ Programming a FPGA is configuring its interconnection matrix and basic blocks (IOB, CLB,...)

[1] ug471_7series_SelectIO.pdf
[2] ug472_7series_Clocking.pdf
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Anatomy of FPGAs  - Hardened cores

Hardened Cores (Also called “IP cores”)

Specialized tasks (e.g. multiplication) take up a lot of logic cells

Hardened cores in silicon for more effective use of resources

Typical cores found in modern FPGAs:

▶ Memory (Block RAM [1])

▶ DSP blocks

▶ Clocking (Programmable PLL)

▶ Communication interfaces (e.g. PCIe)

▶ Serializer/Deserializer (SerDes)

▶ CPU

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Exemplary DSP block with multiplier,
accumulator and pipeline stages

[1] ug473_7Series_Memory_Resources.pdf
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Anatomy of FPGAs  - Classical Design Flow

▶ Create an FPGA design is:

● Describing the interface between the FPGA and the electronic board
→ Configuration of IOB

● Describing the modules (Adder, Multiplier, CPU, FFT,etc…) and how to 
connect them together.

● Transforming this description (RTL) in a machine description called 
bitstream (LUT’s configuration, Interconnection Matrix’s configuration, 
etc…)
→ Configuration of LUTs, PIC
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Anatomy of FPGAs  - Classical Design Flow

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

▶ Functional description
▶ Interface description
▶ Behavioral Simulation

▶ Synthesis tool converts hardware
description into netlist (building 
blocks and interconnect)

▶ Can perform logic optimization
Find best location of primitives for
all elements in netlist

Generating bitstream for direct
FPGA programming or for 
external memory configuration
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Anatomy of FPGAs  - Classical Design Flow

Bitstream

synthesis

P&R
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Anatomy of FPGAs  - What we’ve learnt

▶ FPGA are made of configurable logic blocks and dedicated 
blocks surrounded by I/Os, interconnected by a switch 
matrix

▶ Programming the FPGA is basically writing values into LUTs 
and configuring the interconnection matrix

▶ The hardware description is translated into a netlist by the 
synthesizer

▶ The P&R finds the best locations for the primitives and 
interconnects the components

▶ Software / CPU specify a sequence of instructions

▶ HDL / FGPA describe structure and behavior of digital components
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Anatomy of FPGAs  - FPGA vs CPLD

▶ Configuration is volatile. Bitstream is 
stored in an external memory (SPI 
flash) and loaded.
→Delay of several milliseconds at 
power ON.

▶ Variety of on-die dedicated 
hardware such as Block RAM, DSP 
blocks, PLL, DCMs, Memory 
Controllers, Multi-Gigabit 
Transceivers

▶ PCB cost much higher (BGA, 
multiple voltage rails, external SPI 
flash)

▶ Bitstream is stored in flash memory.
→Instant ON

▶ Very small amount of logic resources

▶ No on-die hard IPs available (RAM, PLL,…)

▶ Only one voltage rail

▶ Available in TQFP package

FPGA CPLD
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Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics
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Flip-Flops - Description

▶ There are a few different types of flip-flops (JK, T, D) but the one that is used most frequently is 
the D Flip-Flop. 

▶ Sequential logic operates on the transitions of a clock. When a Flip-Flop sees a rising edge of the 
clock, it registers (copy and hold) the data from the Input D to the Output Q.

▶ Flip-flops are the main components in an FPGA that are used to keep the state inside of the chip.
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Flip-Flops – Timing considerations

▶ Because of the construction of a flip-flop [1], the input must be held steady in a period around the 
rising edge of the clock.

▶ Setup time is the minimum amount of time the data input should be held steady before the clock 
event, so that the data is reliably sampled by the clock.

▶ Hold time is the minimum amount of time the data input should be held steady after the clock 
event, so that the data is reliably sampled by the clock. 

[1] https://www.edn.com/understanding-the-basics-of-setup-and-hold-time/
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Flip-Flops – Metastability

▶ If setup and hold time are not respected, flip-flops are subject to a problem called    
metastability
▶ The result is that the output may behave unpredictably, taking many times longer than 
normal to settle to one state or the other, or even oscillating several times before settling.

https://youtu.be/5PRuPVIjEcs
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Three main reasons for metastability problem (1/3)

▶ An external signal (user input) is read inside the FPGA:

D Q

FPGAOUTSIDE

CLK

D doesn’t change during the 
aperture.
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Three main reasons for metastability problem (1/3)

D Q

FPGAOUTSIDE

CLK

D changes during the aperture→Metastability 

▶ An external signal (user input) is read inside the FPGA:
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Three main reasons for metastability problem (2/3)

▶  Too much logic (delay) between flip-flops (setup violation):

t s t h t s t h

CLK

Q-FF1

D-FF2

D-FF1

In this case, the delay 
induced by the logic is short 
enough
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Three main reasons for metastability problem (2/3)

▶  Too much logic (delay) between flip-flops (setup violation):

t s t h t s t h

CLK

Q-FF1

D-FF2

D-FF1

In this case, the delay 
induced by the logic is too 
long

Setup violation
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Three main reasons for metastability problem (3/3)

▶  Multiple clock domains

CLKA

A

IN
t s t h

CLKB

Because clk_A and clk_B are asynchronous, A can change anytime with regards to clk_B rising edge.

Setup violation
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Who is responsible ?

▶ You are responsible for this. Designers must prevent timing 
problems:

● External asynchronous signals must be handled properly with 
synchronizers,

● when using multiple clock domains, use proper clock domain 
crossing (CDC) circuits,

● look at static timing analysis report from your synthesis tool and 
take care (at least evaluate) of every (most) warnings.
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Synchronizer

▶ Use a sequence of registers in the destination clock domain 
to resynchronize the signal to the new clock domain.
▶ Allows additional time for a potentially metastable signal to 
resolve to a known value before the signal is used in the rest 
of the design.

https://trilobyte.com/pdf/golson_snug14.pdf
Must be kept close each other
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Clock Domain Crossing

▶ Used when transferring datas (busses) across clock domain 
boundaries.

▶ Two methods:
● Control based data synchronizers
● FIFO based data synchronizers



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 33

Control based data synchronizers

▶ The enable signal is responsible to inform the receiving 
domain that data is stable and ready to be captured.

▶ Control based data synchronizer has limited bandwidth.

D Q D Q

D Q
D Q

D Q

D Q

D Q

Do Di

En

En’

En’

Do
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FIFO based data synchronizers

▶ Data is pushed into the FIFO with transmitter clock and 
pulled out from FIFO with receiver clock.

write_clock

write_data

write_full

write

read_clock

read_data

read_empty

read

Asynchronous
FIFO

wr clock domain rd clock domain
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Static Timing Analysis

▶ Performed by the implementation tool
▶ Needs constraints (SDC files)
▶ Verify every path and detect potential failures at every corners
▶ Gives Fmax
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Static Timing Analysis

▶ Performed by the implementation tool
▶ Needs constraints (SDC files)
▶ Verify every path and detect potential failures at every corners
▶ Gives Fmax
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Static Timing Analysis
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Static Timing Analysis
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Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics
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Agenda

▶ Migen: introduction and workshops
● Concepts, Modules and signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2
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What is Migen

▶ An alternative HDL based on Python

▶ FHDL is a Python DSL (Domain Specific Language) defined by Migen and 
allow generating Verilog or instantiating Verilog/VHDL from Python code

▶ It basically uses Python to create a list of combinatorial and 
synchronous assignments and generate a Verilog file from these 
assignments. 

▶ Migen has an integrated simulator that allows test benches to be written 
in Python

https://m-labs.hk/gateware/migen
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Migen – Concepts 

▶ A module (as in verilog) is a block containing a functional 
description (Migen code) that uses input/outputs

WRITE

BTN

LEDSMyModule

CLOCK

FPGA
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Migen – Concepts 

▶ Migen uses Python classes
▶ The most important class is Module
▶ A module has input / output signals and parameters
▶ The direction of signals in the interface is not explicit

WRITE

BTN

LEDS
MyModule
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Migen – Concepts 

▶ Interfaces of modules are defined by attributes
▶ All attributes with the type Signal() are considered 
interfaces of the module
▶ In our case:

write

btn

leds
MyModule
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Migen – Concepts 

▶ Every signal assignment is either:

- combinatorial (continuous assignments)

- synchronous (at the edge of the clock signal)

▶ Module() has a sync and a comb attributes (lists)

▶ Assignment are added to the chosen type using the in-
place addition operation (+=)  
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Migen – Concepts 
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Migen – Signal

▶ Signal object represents a value that is expected to change 
in a circuit. It does exactly what Verilog’s “wire” and “reg” and 
VHDL’s “signal” do.
▶ They are assigned using the eq() method
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Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2
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Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink
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Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink
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Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink
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Migen – Blinker module

▶ Functional block with input and outputs
▶ Signals of the interface are attributes of the class
▶ A module has important attributes (comb, sync,…)
▶ As any other Python class, parameters can be passed to modules

WRITE

BTN

LEDS

Blink
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Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2
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Migen – Attributes of Modules

▶ comb → a list of combinatorial assignments
▶ sync → a list of synchronous assignments
▶ submodules → a list of modules used by this module
▶ specials → a list of Platform specific modules, Verilog 
instances, memories,…

▶ clock_domains → clock domains used by this module
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Migen – Attributes of Modules: comb

▶ comb → a list of combinatorial assignments
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Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments
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Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

?
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Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

test_b == 0, set a to 0
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Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

a is now 0, a == 0 is true 
so set out to 1

test_b == 0, set a to 0
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Migen – Attributes of Modules: sync

▶ sync → a list of synchronous assignments

test_b == 0, set a to 0

a is now 0, a == 0 is true 
so set out to 1

Finally, out is now equal to 1
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Migen – Attributes of Modules: submodules

▶ submodules → a list of modules used by this module

▶ Can be named (self.submodules.m2 = m2)

We have access to 
the interface of m2
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Migen – Attributes of Modules: special

▶ special → a list of Platform specific modules, Verilog 
instances, memories,...
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Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2
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Migen – Combinatorial example

WRITE

BTN

LEDSM1
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Migen – Combinatorial example
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Migen – Synchronous example

WRITE

BTN

LEDSM1
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Migen – Synchronous example
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Migen – Synchronous example
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Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2
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Migen – IF / ELSE

▶ Migen doesn’t use Python’s if/else.
▶ If is implemented as a Class. Else and Elif are methods.
▶ Assignments under If are separated by comas
▶ Can be used in comb or sync blocks
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Migen – FSM

▶ Finite State Machine is a way to implement sequential 
execution
▶ FSM() is a module, it needs to be added to submodules
▶ States are defined with fsm.act
▶ Assignments are separated by a coma



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 72

Migen – FSM

▶ NextState() is used to move to another state
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Migen – FSM

▶ NextValue(a, value) is used make a synchronous 
assignment. It is equivalent to self.sync += a.eq(value)
▶ The signal keep it’s value outside the state it has been 
assigned

Coming from “WAIT”, 
a is equal to 5

a will be equal to 5 
on the next clock 
cycle
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This is equivalent to 
this (pseudo code)
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Migen – FSM

▶ Direct assignment .eq() is used make a combinatorial 
assignment. It is equivalent to self.comb += a.eq(value)

▶ a is equal to 5 when in “START” state and 0 in other states

a is equal to 5 as 
long as we are in this 
state
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Migen – FSM

This is equivalent to 
this (pseudo code)
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Migen - Libraries

Migen has a library (genlib) with most of the base elements 
required to digital logic:

● Records (group signals together with direction),
● FSM (Finite State Machine),
● Clock Domain Crossing,
● Memory,
● Instance (reuse Verilog/VHDL),
● FIFO,
● ...

Most of the useful functions are grouped in the Migen 
Cheatsheet
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Agenda

▶ Migen: introduction and workshops
● Concepts, Modules ans signals
● Blinker example
● Attributes of Module()
● Example of verilog output
● Operators (If/Else and FSM)
● Minimum project requirement (Migen/LiteX)
● Workshop 1/2
● Records
● Simulation
● Workshop 2/2
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Migen/LiteX – Minimum project requirement

▶ Declare IO resources
▶ Choose a platform and gives it the IO list
▶ Request platform resources (IOs)
▶ Assign requested resources to Module’s interface
▶ Add timing constraints
▶ Let the platform build system do its job (build the 
bitstream)



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 80

Migen/LiteX – IO resources

▶ Declare IO resources (as a python list of tuples)

▶ Look all available options in the documentation
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Migen/LiteX – IO resources

▶ Declare IO resources (as a python list of tuples)

▶ Look all available options in the documentation
No documentation (for now)
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Migen/LiteX – Platform

▶ Choose a platform and pass it the IO list

▶ Litex provides infrastructure for:
● altera, 
● efinix, 
● gowin, 
● lattice, 
● microsemi, 
● quicklogic, 
● xilinx
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Migen/LiteX – Request resources

▶ Request platform resources (IOs)

▶ Returns Signal() from platform resources
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Migen/LiteX – Minimum project code

▶ Assign requested resources to Module’s interface

Once requested, signals 
can be used in the 
design
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Migen/LiteX – Minimum project code

▶ Assign requested resources to Module’s interface
cd_sys is mandatory. At 
some point it has to be 
created

The clock signal has to 
be assigned
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Migen/LiteX – Minimum project code

▶ Assign requested resources to Module’s interface

Add and use a module
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Migen/LiteX – Minimum project code

▶ Add timing constraints

This is the requested 
clock signal
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Migen/LiteX – Minimum project code

▶ Build the bitstream
Configured platform

Top level Module

Ask LiteX to build the 
bitstream
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Migen hands-on

Now, let’s practice !
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Step0 – Led blinker

What you’ll see:
 

▶ Platform definition
▶ Resources assignment
▶ Submodules
▶ Simulation
▶ Build
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Step1 – Introduction

▶ Addressable LED ring
▶ Control over a single wire
▶ 24 bits per LED

FPGA
BOARD

VCC
GND
DATA
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Step1 – LED protocol
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Step1 – Instructions

▶ Control the first LED

▶ Send 24 “Ones” pulses (equivalent to 0xFFFFFF, white 
color)

▶ Test with ./workshop_step1.py sim

▶ gtkwave sim.vcd &

▶ CTRL-R in gtkwave to update waveform after a new 
simulation
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Step1 – Tip

 self.sync += [
    if (pulse_cnt  < 24) {
        if (pulse_high) {
            output = 1
            cnt_high = cnt_high + 1
            if (cnt_high == t1h) {
                pulse_high = 0
                cnt_high = 0
            }
        } else {
            output = 0
            cnt_low = cnt_low + 1
            if (cnt_low == t1l) {
                pulse_high = 1
                cnt_low = 0
                pulse_cnt = pulse_cnt + 1
            }
        }
     }
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Step1 – Observations

▶ Synchronous assignments take effect on the next cycle
▶ If a signal is assigned multiple time in the same clock cycle, 
the last assignment is taken into account



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 96

Step2 – Instructions

▶ Simplify code from step1 using WaitTimer module from migen/genlib

▶ timer = WaitTimer(period)

● Period is expressed in clock cycles
● Two control signals: wait and done

▶ Compute timers period from time and frequency. Pure Python code can be 
used here.
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Step2 - Observations

▶ Don’t forget to add your module to submodules. 
 Migen won’t complain !

▶ Pure Python code can be used in Migen modules 
(configuration, genericity,...)
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Step3 - Instructions

▶ Use Finite State Machine (FSM) to simplify your code

▶ NextState(state) selects the next state

▶ NextValue(a, b) is equivalent to self.sync += a.eq(b) when the FSM is in the given state.

▶ a.eq(b) is equivalent to self.comb += a.eq(b) when the FSM is in the given state. When 
it’s not, a.eq(0)
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Step3 - Observations

▶ Direct assignment in FSM are combinatorial
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Step4 - Instructions

▶ Design a RingSerialCtrl module

▶ leds is a 12 bits input, each bit controls a led (on/off)
▶ colors is a 24 bits input that controls the ring color
▶ nb_leds is a parameters to configure how much LED the ring has

Note:
You can access individual bits in a Signal() using Python indexes and slices:

● led[1] is the second bit of led,
● led[-1] is the MSB,
● led[0:3] are the 3 lower bits of led.

RingSerialCtrl

leds(12)

colors(24)

nb_leds

do(1)
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Step4 - Tip

fsm.act("RST",
            # wait for trst
            # when done, init variables and go to LED-SHIFT
        )
fsm.act("LED-SHIFT",
            # init bit counter
            # increment led_count counter
            # shift led pattern
            # check if led should be lit (assign 0 or color)
            # if next led go to BIT-TEST else RST
        )
fsm.act("BIT-TEST",
            # if data(MSB) == 1 go to ONE_SEND
            # else go to ZERO_SEND
            # data = data << 1

        )
fsm.act("ZERO-SEND",
            # send bit zero pattern (timer)
            # go to BIT-SHIFT

        )
fsm.act("ONE-SEND",
            # send bit one pattern (timer)
            # go to BIT-SHIFT
        )
fsm.act("BIT-SHIFT",
            # shift color data
            # check if 24 bits sent
            # if yes go to LED-SHIFT
            # else go to BIT-TEST
        )
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Step4 - Observations

▶ You can access individual bits in a Signal using Python indexes 
and slices:

● led[1] is the second bit of leds,
● led[-1] is the MSB,
● led[0:3] are the 3 lower leds bits. Bit 3 is excluded !

Different with V*HDL where bit vectors are represented from MSB 
to LSB: 

● my_vhdl_signal(11 downto 0)
● my_verilog_signal[11:0]
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Step5 - Instructions

▶ Create a new module RingControl to control RingSerialCtrl and 
make LEDs spins

▶ Put both modules in a separate file named ring.py

Bonus1:

▶ Use Array([a, b, …]) to light LED following the pattern defined in 
this array of values

Bonus2:

▶ Add a build time option to use simple LED spin or array mode 
(using pure Python syntax)
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Step5 - Tips

Python statement can be used inside Modules:

if (something == True):
    self.comb += out.eq(test1)
else:
    self.comb += out.eq(test2)
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Step5 - Observation

▶ Organize your files as much as possible

▶ Use Python to configure your design
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Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops

● Records
● Simulation

▶ LiteX: introduction and workshops
▶ LiteX: advanced topics



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 107

Migen/LiteX – Records

▶ Records are structures of Signal() objects
▶ Records are described with a layout (list of tuples)
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Migen/LiteX – Records

▶ IO Resources can be Records (often, they are)
▶ Subsignal is used
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Migen/LiteX – Records

▶ Signals of a Record are attributes of it
▶ Testing attributes can be part of the configuration
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Agenda

▶ Description of FPGAs
▶ Digital design challenges
▶ Migen: introduction and workshops

● Records
● Simulation

▶ LiteX: introduction and workshops
▶ LiteX: advanced topics
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Migen/LiteX – Simulation

Generates
Inputs

(generator)
Module

(DUT, Device Under Test)
Check
outputs

Generates
Inputs

(generator)
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Migen/LiteX – Simulation

▶ Migen has an integrated simulator
▶ Test benches (generators) execute concurrently
▶ Use yield to communicate with the simulator. There are four basic patterns:

● Reads: state of a signal can be read using (yield signal)
● Writes: state of a signal after next clock is set with yield signal.eq(value)
● Clocking: simulation can be advanced one clock cycle using yield
● Composition: control can be transferred to another function using yield from run_other()

▶ Run with run_simulation(dut, bench) where dut is the module under test and 
bench are the generators functions.
▶ Can generate a VCD file containing a dump of the signals inside dut
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Migen/LiteX – Simulation

Module under test

Test Bench (generator)

Simulation
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Migen/LiteX – Simulation

Module under test

subroutine

Simulation

Test Bench (generator)
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Migen/LiteX – Simulation

▶ Multiple generators can run in parallel
▶ Can be multiple clock domains
▶ Don’t forget yield, yield from (Migen won’t complain)
▶ Signals must not be driven concurrently
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Step6 – Write a testbench for RingSerialCtrl

What you’ll learn:
▶ Use generators
▶ Write complex test benches
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Step6 – Write a testbench for RingSerialCtrl

▶ Write a generator to set a random color to a random LED
▶ Write a generator to detect the timeout condition
▶ Write a generator to print which value is set on each LED
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ Litex: advanced topics
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System On Chip - SoC
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System On Chip - SoC
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System On Chip - SoC
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▶ Bus adaptation (width, type)
▶ Arbitration
▶ Address mapping
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What is LiteX

LiteX
16 Softcores
serv, mor1kx, 
vexriscv,picorv32...

Migen
Uses
Extends

build

altera
anlogic
efinix
gowin
lattice
microsemi
quicklogic
xilinx

tools soc

cores
interconnect
integration
software
doc

provides

supports

11 Open sources IP
litepcie, litedram, liteiclink, 
liteeth, litesdcard, litevideo, 
litescope, litesata, litejesd204b

litehyperbus, litespi

supports

104 Supported boards
- Platform definition
- Target example

supports

server
term
client
...

gpio
i2s
spi
pwm
led
tmds
...

litex-boards

platforms
targets
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LiteX’s key features

▶ Extends Migen with new concepts and libraries
 

▶ Build and configure SoC easily

● Scale from no CPU to Linux capable SoC
● Open sources IP
● Easy interconnection of modules
● Flexible SoC configuration
● Unified build system across vendors

▶ Portability (abstraction of technology implementation)
▶ Debug infrastructure with LiteX Server, LiteScope and other tools
▶ BIOS with command line interface for system bring-up
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LiteX – Busses

▶ SoC interconnections are made with Wishbone buses (open sources 
standard). It can be configured to use AXI-Lite (AXI is a royalty free 
protocol available from ARM)

▶ CSR (Control and Status Registers) bus is a simple bus protocol used 
to handle low bandwidth transactions

▶ Litex streams is an interface to connect streaming components (data 
flow exchange)

▶ Bridges are available to interconnect all supported bus

▶ The CSR bus is automatically bridged to the Wishbone address space
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LiteX – SoC classes

SoC(Module)→LiteXSoC→SoCCore→SoCMini→LiteXCore

▶ SoC is where busses, RAM, ROM, CPU and timer are added 
(via methods) as submodules,

▶ LiteXSoc has a set of methods to add features to SoCCore: 
add_identifier, add_uart, add_sdram, add_ethernet,…

▶ SoCCore takes a set of arguments that defines a SoC based 
on LiteXSoc and provides methods to extends this SoC. 
This is the class that you might use to create a SoC.

▶ SoCMini is a version of SoCCore with minimum features 
enabled (by default: no CPU, no RAM, no UART, no TIMER)
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LiteX – Example

UARTBoneUART Wishbone
Crossbar

WB master

WB↔CSR
bridge Ident

ledring

ctrl
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LiteX – SoCCore

▶ Configuration of core functions with arguments
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LiteX – SoCCore

▶ Add peripherals with methods from SoCCore:

● add_csr
● add_wb_master
● add_wb_slave

▶ Add peripherals with methods from LiteXSoc:
● add_spi_flash
● add_sdram
● add_ethernet
● ….
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ Litex: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ Litex: advanced topics
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LiteX – SDRAM

▶ Add DRAM memory to the system
▶ Use LiteDRAM and supports SDR, DDR2, DDR3, DDR4 and LPDDR
▶ Needs a PHY module
▶ Signals have to be named a certain way
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LiteX – Ethernet

▶ Add Ethernet to the system
▶ Use LiteETH and supports MII, RMII, GMII, RGMII, 1000BASEX, XGMII
▶ Needs a PHY module
▶ Signals have to be named a certain way
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LiteX – Others

▶ add_spi_flash
▶ add_spi_sdcard
▶ add_sdcard
▶ add_sata
▶ add_pcie
▶ add_video_colorbars
▶ add_video_terminal
▶ add_video_framebuffer

▶ Once again, there is no documentation :(
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics
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LiteX – Add a SoC to the project

▶ Create a class that inherits from SoCCore or SoCMini
▶ Set parameters
▶ Don’t forget to add a .crg submodule !

▶ All other submodules will be added in this class
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LiteX – Build a SoC

▶ Add your own arguments (used locally)
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LiteX – Build a SoC

▶ Builder has a set of arguments



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 137

LiteX – Builder arguments

▶ --csr-csv generates a file with CSR addresses and is 
used by all LiteX tools
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LiteX – Build a SoC

▶ SoCCore has a set of arguments
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LiteX – SoCCore arguments
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics
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LiteX – Software, BIOS

▶ Built-in BIOS with low level 
commands to test the SoC

▶ Uses picolibc

▶ Several boot sources (RAM, 
flash, ROM, serial, tftp, sata, 
sdcard)

▶ Not a full featured bootloader. 
Think of a first stage bootloader.
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LiteX – Software, baremetal

▶ Build your own baremetal application using provided 
software libraries (spi, fatfs, sata, ethernet,...)

▶ BIOS can load the application

▶ Application can be loaded in ROM during build:

--integrated-rom-init=”myfile.bin”
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LiteX – Software, generated files

▶ csr.h provides helper functions and definitions for all CSR peripherals

▶ git.h provides the git hash of the Litex version used to build the SoC

▶ mem.h definition of memory map as C defines

▶ output_format.ld and regions.ld are for the linker script

▶ soc.h provides the configuration of the SoC

▶ variables.mak are used by Makefiles
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LiteX – Software, linker script

▶ Memory regions defined in generated/regions.ld 

▶ An example of linker script can be found in 
litex/soc/software/demo

▶  In general, your program will be placed in the main RAM 
before execution (by the BIOS)

▶ Program can also replace the BIOS in rom

▶ Need to adapt the linker script
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics
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LiteX - Tools

▶ litex_server  →proxy between tools and SoC 
      interconnection crossbar

▶ litex_term →terminal emulator with SFL (Serial Flash 
Loader) capabilities

▶ litex_cli →simple read/write access to SoC 
   interconnection crossbar

▶ litescope_cli  →control tool for an embedded logic  
 analyzer
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LiteX – Tools, litex_server

▶ Allows simultaneous access to the SoC interconnect from tools
▶ Needs a bridge (UART, Ethernet, PCIe)
▶ Uses Etherbone protocol (“standardized” wishbone over IP)

UARTBoneUART

Wishbone
Crossbar

WB 
master

SoC

litex_server

litexscope_cli

litex_cli

my_cli

HOST

litex_term UART
(crossover)CPU
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LiteX – Tools, litex_term

▶ Can interface the Serial Flash Loader (SFL) of the BIOS
▶ Only binary files (no elf)
▶ Default loading address is 0x40000000 (main_ram)
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LiteX – Tools, litex_cli

▶ Can read/write to arbitrary address
▶ Knows SoC registers (read from csr.csv file)
▶ Needs to connect to litex_server
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LiteX– Tools, litescope_cli

▶ litescope can be integrated to the design to observe internal 
signals
▶ litescope_cli can control litescope through litex_server (trigger)
▶ Needs analyzer.csv generated during build
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops

● Presentation of SoCs and LiteX
● Examples of peripherals integration
● How to build a SoC
● Software in LiteX
● LiteX tools
● Workshop

▶ LiteX: advanced topics
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LiteX – Workshop / Lessons 

step7 – Build a simple SoC

step8 – Add CSR to RingControl and use litex_cli to control the leds

step9 – Add add use LiteScope and litescope_cli

step10 – Write a C program to control the leds and run it from the BIOS then 
run it from ROM

step11 – Add a PLL and clock the RingControl faster than the system

step12 – Add a wishbone interface to RingControl and use it

Now, let’s practice !
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Step7 – Build a SoC

What you’ll see:
 

▶ Derive and configure a SoC class

▶ Setup argument for local usage

▶ Use Build class

▶ Use of programmer
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Step7 – Build a SoC

▶ Use --help to see all available arguments

▶ Try to build without a crg

▶ Load the bitstream and run litex_server and use litex_cli 
to reads the available registers and the SoC’s identifier
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Step7 – Observations

▶ self.submodule.crg is mandatory

▶ Look at build logs
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Step8 – Add CSR 

What you’ll learn:
 

▶ What CSR are
 

▶ Add and use CSR in a module

▶ Read/Write CSR from litex_cli
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Step8 – What CSR are

▶ Control and Status Registers
 

▶ Registers placed on a simple bus accessible 
from Wishbone (bridged) 

▶ Not aimed to do fast data transfers
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Step8 – How to use CSR

▶ Inherit from AutoCSR
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Step8 – How to use CSR

▶ Inherit from AutoCSR

▶ CSRConstant → Optimized away, values are set in generated software files
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Step8 – How to use CSR

▶ Inherit from AutoCSR

▶ CSRConstant → Optimized away, values are set in generated software files

▶ CSRStorage → Register read/written by the CPU
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Step8 – How to use CSR

▶ Inherit from AutoCSR

▶ CSRConstant → Optimized away, values are set in generated software files

▶ CSRStorage → Register read/written by the CPU

▶ CSRStatus → Register read only from the CPU
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Step8 – How to use CSR

▶ CSRStorage and CSRStatus values must be accessed using 
their storage attribute
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Step8 – How to use CSR

▶ CSRStorage and CSRStatus values must be accessed using 
their storage attribute

▶ CSRField are structured representation of a CSR

▶ CSRField is a Signal() and can be used directly
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Step8 – How to use CSR

▶ CSR regions must be added to the SoC with add_csr()
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Step8 – Documentation

▶ Documentation can be generated from CSR definition (- -doc)

▶ Fields can improve code readability and documentation

▶ You can add documentation for a module if you inherit from AutoDoc

https://github.com/enjoy-digital/litex/wiki/SoC-Documentation

Example of a generated doc

https://github.com/enjoy-digital/litex/wiki/SoC-Documentation
../../../pCloudDrive/COLLSHADE/01_DEVELOPPEMENT/02_FORMATION/v1.0/html_doc_example/index.html
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Step8 – Let’s get to work

▶ Add a CSR to RingControl to control LED’s color
▶ Add RingControl to the SoC
▶ Use litex_cli to change the color of the LEDs

Bonus:
▶ Add a command line argument to control the mode at 
build time
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Step8 – Observation

▶ submodules must be named to have CSR
▶ Default csr paging is 0x800 (2048 bytes), 32 bits, big 
endian and mapped at address 0xF0000000



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 168

Step9 – Add / configure / use Litescope

What you’ll learn:
 

▶ Add Litescope to your design

▶ Use litescope_cli to configure trigger and dump 
waveforms
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Step9 – Add / configure / use Litescope

▶ Needs a bridge to the SoC (uartbone, etherbone,…)

▶ Signals to be observed need to be listed in the source 
code (add accessible from the top level module)
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Step9 – Add / configure / use Litescope

▶ Samples are stored in embedded block rams. Resources 
are limited !

▶ depth configures how many samples are captured

▶ clock_domain tells which clock domain is used

▶ The current configuration is stored in analyzer.csv
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Step9 – Add / configure / use Litescope

▶ litex_server needs to be started

▶ litescope_cli is used to control the capture
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Step9 – Let’s get to work

▶ Add a Litescope instance

▶ Configure Litescope to visualize:

● bit_count and trst_timer.wait in RingSerialCtrl,
● Index in RingControl

▶ Triggers on trst_timer.wait rising edge
▶ Visualize the result
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Step9 – Observation

▶ Signals that you want to watch must be part of the 
Module’s interface

▶ Don’t forget to add self.add_csr("analyzer")

▶ Several instances of LiteScopeAnalyzer can be used at 
the same time (e.g several clock domains)

Each litescope_cli needs to read the correct (- -csv) 
analyzer CSV file

https://github.com/enjoy-digital/litex/wiki/Use-LiteScope-To-Debug-A-SoC

https://github.com/enjoy-digital/litex/wiki/Use-LiteScope-To-Debug-A-SoC
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Step10 – Write a baremetal software

What you’ll learn:
 

▶ Create a baremetal software for your SoC

▶ Download and run your software using the litex_term

▶ Embedded your software in ROM
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Step10 – Write a baremetal software

▶ Need to use SoCCore (was SoCMini until now)

▶ We need some RAM since the code will be upload from 
the host (in case we don’t replace the BIOS in ROM)

▶ Write a makefile that uses the generated variables from 
the SoC definition

▶ Provide a linker script
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Step10 – Workshop

▶ Build the SoC with some integrated main ram

▶ Complete the provided main.c to control the color of the LEDs

▶ Load and run the program using litex_term

▶ Build the program to target the ROM

▶ Initialize the ROM with your program and load the bitstream
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Step10 – Workshop

▶ Booting from ROM require a change in the Linker script
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Step11 – PLL and ClockDomains

What you’ll learn:
 

▶ What is a ClockDomain

▶ Use a PLL

▶ Use ClockDomainsRenamer
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Migen – Attributes of Modules: clock_domains

▶ clock_domains → clock domains used by this module
▶ Clock domains object contains:

● a the name for the clock domain
● a clock signal
● an optional reset signal

▶ Default clock domain is sys (implicit)
▶ A module can have more than

one clock domain
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Migen – Attributes of Modules: clock_domains

Create a new clock domain and 
assign a clock signal
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Migen – Attributes of Modules: clock_domains

This assignment takes place in the 
“pix” clock domain
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Migen – Attributes of Modules: clock_domains

Assignment to cd_sys is implicit



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 183

Migen – Attributes of Modules: clock_domains
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Step11 – ClockDomainsRenamer

▶ Change the clock domain of a module

▶ Used while adding a submodule

▶ Can change several clock domains at the same time



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 185

Step11 – ClockDomainsRenamer - Example
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Step11 – ClockDomainsRenamer

Usage:

self.submodules.descrambler = Descrambler(“gtp0_rx”)

And:

sync = getattr(self.sync, clock_domain)

Is equivalent to:

self.sync.gtp0_rx += [
...
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Step11 – ClockDomainsRenamer

▶ CSR are always in cd_sys
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Step11 – PLL

▶ Phase Locked Loop

▶ One clock input, several clock output

▶ Clock multiplication, phase shift
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Step11 – PLL

▶ PLL code is in litex→soc→cores→clock

▶ Constructor can be slightly different between platforms

▶ You still need to get an idea what your PLL is capable of
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Step11 – Workshop

PLL

100MHz

cd_sys

cd_led

60MHz

50MHz RingControl

SoC

▶ Add a PLL and clock the design as shown here after

▶ Change the color of the LEDs using the BIOS (there is no 
uart_bone anymore)
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Step11 – Observations

▶ Reset signal of clock domains is automatically handled

▶ CSR are in sys clock domain
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Step12 – Use the wishbone bus

What you’ll learn:
 

▶ How Wishbone works

▶ Add and use a wishbone slave

▶ Add and use a wishbone master
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Step12 – Wishbone description

▶ Open source hardware bus definition

▶ 8 – 64 bits data bus

▶ Supports single transfers and bursts

▶ Two version are used: B3 and B4

▶ B4 introduces pipelined transfers

▶ LiteX uses the Wishbone B3

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

MASTER SLAVE

https://cdn.opencores.org/downloads/wbspec_b3.pdf
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Step12 – Wishbone simple read

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

MASTER SLAVE
CLK

CYC

STB

ACK

ADR VALID

DAT_R VALID

WE

▶ ERR can finish a cycle (like ACK)
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Step12 – Wishbone simple write

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

SEL

CYC

STB

ACK

WE

CTI

BTE

ERR

ADR

DAT_W

DAT_R

(DAT_O)

(DAT_I)

MASTER SLAVE
CLK

CYC

STB

ACK

ADR VALID

DAT_W VALID

WE
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Step12 – Wishbone wait states

CLK

CYC

STB

ACK

ADR N

DAT_W VALID

WE

N+1

VALID

WAIT STATE
(MASTER)

WAIT STATE
(SLAVE)
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Step12 – Wishbone SEL

▶ Indicates where valid data is on the bus

▶ Used when a granularity smaller than the bus width is 
needed (write a 8-bit value on a 32-bit bus)

 

DAT_W 0x11223344

SEL 0b0010

ADR 0x20001000

▶ In this example, 0x33 is written at address 0x20001001

▶ Depends on ENDIANNESS
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Step12 – Wishbone burst cycles

▶ Increase bandwidth (1 transfer per cycle)
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Step12 – Wishbone burst cycles

▶ Use CTI (Cycle Type Idenfier)
▶ Use BTE (Burst Type Extension)
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Step12 – Wishbone burst cycles
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Step12 – Use Wishbone slave with LiteX

▶ add_slave method from SoCCore

▶ IO Regions are non-cacheable

▶ Origin can be specified

▶ Address to the module is adr[2:32] and is not relative to 
the base address
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Step12 – Exercise

▶ Add a wishbone interface slave to RingControl

▶ Use this bus to control the ring’s color

▶ Use this bus to read a version number

▶ Read and write values from the BIOS
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Step12 – Observation

▶ The address is expressed in 4 bytes words

▶ The address is not relative to the base address of the 
module
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Step12bis – Use Wishbone master with LiteX

▶ add_master method from SoCCore

▶ Address from the module is adr[2:32]
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Step12bis – Exercise

▶ A DDR3 controller has been added as main_ram 
mapped at address 0x40000000

▶ Add a wishbone master to RingControl

▶ Read LEDs color from the DRAM using the wishbone 
master interface

▶ Color will be written to memory from the BIOS
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

● Streams  / workshop
● Usage of Verilog/VHDL modules in LiteX  / workshop
● Verilator  / workshop



COLLSHADE - Introduction to digital design with Migen and Litex – v1.0 207

LiteX – Streams

▶ Streams are groups of signals (Migen’s record) 
used to exchange data between Modules
▶ There is no “addresses” on this “bus”
▶ Transfers are from the Source to the Sink
▶ Stream nodes are called Endpoints

CLK

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK
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LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid 
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LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid 
▶ ready is high when sink is ready to receive
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LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid 
▶ ready is high when sink is ready to receive

Sink is not ready.
The Source keeps the current Payload

until Sink is ready again
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LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid 

▶ ready is high when sink is ready to receive
▶ first and last mark packets boundaries
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LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid 
▶ ready is high when sink is ready to receive
▶ first and last mark packets boundaries
▶ payload is a Record with its own layout, it can change on every 
valid/ready transaction
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LiteX – Streams

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SOURCE

VALID

READY

FIRST

LAST

PAYLOAD

PARAM
SINK

▶ valid indicates data from source are valid 
▶ ready is high when sink is ready to receive
▶ first and last mark packets boundaries
▶ payload is a Record with its own layout, it can change on every 
valid/ready transaction
▶ param is a Record with its own layout, it can evolve at each start of 
packet
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LiteX – Streams usage

▶ Streams are Endpoint() classes
▶ Defined from a layout
▶ param_layout is optional
▶ valid, ready, first, last are added automatically
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LiteX – Streams example

Input and output Streams are added to the Module
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LiteX – Streams example

Add a stream FIFO with its own layout
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LiteX – Streams example

connect() is used to connect a sink to a source.
Always use source.connect(sink)

Connect self.source to fifo.sink but don’t
connect valid, ts and error (omit).They will be
controlled in the module.
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LiteX – Streams components

▶ stream.SyncFIFO
▶ stream.AsyncFIFO
▶ stream.ClockDomainCrossing
▶ stream.Multiplexer
▶ stream.Demultiplexer
▶ stream.StrideConverter
▶ stream.Pipeline
▶...
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step13 – Streams workshop

What you will learn:
▶ Connect and control sinks / sources
▶ Use Ethernet UDP streamer
▶ Use WishboneDMAWriter
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step13 – Streams workshop

▶ Receive UDP payload and write it in DRAM
▶ Check received payload using the BIOS

PC

netcat -u 192.168.1.98 5678 < test.bin
echo 'test' > /dev/udp/192.168.1.98/5678

litex_server

LiteEthUDPIPCore

LiteEthEtherbone LiteEthUDPStreamer

SRAM WishboneDMAWriter

YourModuleHere

add_etherbone()
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step13 – Streams workshop

▶ The SoC has an etherbone and an LiteEthUDPStreamer
▶ An SRAM memory (sram_udp) is present at 0x20000000
▶ LiteEthUDPStreamer provides a stream from UDP 
received frames
▶ WishboneDMAWriter takes a stream (address, data) and 
converts it to Wishbone transfers

▶ Write a module to prepare the stream from 
LiteEthUDPStreamer to WishboneDMAWriter
▶ See further instructions in the code
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step13 – Obervations

▶ Always use xxx.from.connect(yyy.to)
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

● Streams  / workshop
● Usage of Verilog/VHDL modules in LiteX  / workshop
● Verilator  / workshop
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LiteX – Reuse Verilog/VHDL modules

▶ Verilog/VHDL cores can be integrated to Migen/LiteX
▶ Other description languages (Spinal-HDL, nMigen) can 
be reused through Verilog
▶ Migen’s Instance() is used to instantiate the core
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LiteX – Reuse Verilog/VHDL modules

▶ Prefixes are used to specify the type of interface
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LiteX – Reuse Verilog/VHDL modules

▶ LiteX automatically determines the language based on the 
file extension

▶ It is possible to pass multiple sources at once
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step14 – Reuse Verilog/VHDL modules

What you will learn:
▶ Use an external verilog core 
▶ Use litex_read_verilog
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step14 – Reuse Verilog/VHDL modules

▶ Create StreamAddOne module from stream_adder.v and 
add it to the system
▶ Check received payload using the BIOS

PC

netcat -u 192.168.1.20 1200 < test.bin

litex_server

LiteEthUDPIPCore

LiteEthEtherbone LiteEthUDPStreamer

SRAM WishboneDMAWriter S2DMA

stream_adder.v
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step14 – Reuse Verilog/VHDL modules

▶ Use litex_read_verilog to generate a Migen class 
from the verilog file

▶ Create a StreamAddOne module with a sink and a 
source stream port and connect your stream_adder 
inside this module

▶ Insert StreamAddOne between the udp_streamer 
and S2DMA
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Agenda

▶ Description of FPGAs
▶ Digital design basics
▶ Migen: introduction and workshops
▶ LiteX: introduction and workshops
▶ LiteX: advanced topics

● Streams  / workshop
● Usage of Verilog/VHDL modules in LiteX  / workshop
● Verilator  / workshop
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LiteX – What is Verilator ?

▶ Verilog / SystemVerilog simulator
▶ Accept only synthesizable structures 
▶ Converts Verilog into multithreaded C++ or SystemC model
▶ Generates a .cpp and .h file, the Verilated code
▶ Write a test bench with an instance of the Verilated model
▶ Get an executable that runs the simulation
▶ Very fast
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LiteX – Verilator infrastructure

▶ LiteX provides a Verilator simulation framework
▶ Verilator models for DRAM, SPI Flash, SD-Card
▶ Verilator models for Ethernet and serial (interactive)
▶ Modular conception. Modules can easily be added
▶ litex_sim is a ready to use simulated SoC (with all available 
simulated peripherals)
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LiteX – Simulation model

▶ System simulation needs model for external interfaces

Two ways:
▶ Write a synthesizable model

Verilated SoC

Synthesizable Verilog

Peripheral
controller

Peripheral
model

No runtime interaction 
with the simulation

The simulated peripheral is written in 
Migen like any other Module.

Only build time configuration

No user interaction
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LiteX – Simulation model

▶ System simulation needs model for external interfaces

Two ways:
▶ Write a synthesizable model
▶ Write a C++ model

Synthesizable Verilog

Peripheral
controller

Peripheral
model

C++

Runtime interaction with the simulation is possible.
The model can use host’s resources

Host resources

Host

The simulated peripheral is written in 
C++ and it will not be part of the 
Verilated code

Can use host’s resources

Signals must be present on the top 
level of your SoC

Verilated SoC
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LiteX – Writing a model, synthesizable

▶ Writing a model with Migen code is not specific to simulation
▶ The model is synthesizable but resources are not important
▶ In general, fully equivalent to the real interface
▶ See LiteSPIPHYModel in litespi/litespi/phy/model.py
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LiteX – Writing a C++ model

▶ Simulation can be at pins level or interface level

SoC

SPI
controller

SPI
PHY

SPI
device Non simulated configuration

SPI interface
LiteX streams (rx/tx)
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LiteX – Writing a C++ model

▶ Simulation can be at pins level or interface level

SPI device is simulated at 
pin level

SPI interface
LiteX streams (rx/tx)

C++

SoC

SPI
controller

SPI
PHY

SPI
Device
model
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C++

SoC

SPI
controller

SPI
Device
model

SPI
PHY

LiteX – Writing a C++ model

▶ Simulation can be at pins level or interface level

SPI device is simulated at 
interface level

Easier, faster

LiteX streams (rx/tx)
SPI PHY is just a 
pass-through module 
to expose the LiteX 
streams to the SoC 
interface
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LiteX – Writing a C++ model, structure

▶ New modules must be declared during build:

Name of this module.

Will be used to add it to the 
simulation.

▶ Must provides and register a struct ext_module_s
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LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Called once during startup
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LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Must provides a user’s defined session 
information.

This will be available in other callbacks.
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LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

This is where you get and save pointers to 
your pads
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LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Called once during the end of simulation
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LiteX – Writing a C++ model, structure

▶ Must provides and register a struct ext_module_s

Called every clock cycle
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LiteX – Writing a C++ model, example

Add the module to the list

Definition of the Module

Called by LiteX infrastructure

▶ serial2console is a terminal emulator
▶ Gets input/output from UART to your console
▶ litex/build/sim/core/modules/serial2console/serial2console.c
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LiteX – Writing a C++ model, example

Module added to the simulation

pads

UART pads from the 
platform definition.

This UART model use 
streams, not UART pins.
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LiteX – Writing a C++ model, example

Allocation of session’s 
structure

Get pads from Verilated code

Configuration of the terminal

Close callback is not used

Handle data transfers
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LiteX – Writing a C++ model, example

Get pads from Verilated code
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LiteX – Writing a C++ model, example

session’s data

Called for every interface 
passed in add_module + 
clocks

session’s data has now a pointer 
to control or read each pad
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LiteX – Writing a C++ model, example

Execute on every simulation 
cycle
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LiteX – Writing a C++ model, example

Check if we are in a clock’s 
rising edge
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LiteX – Writing a C++ model, example

We are always ready to receive 
characters

Print a valid data
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LiteX – Writing a C++ model, example

By default, no character is sent

Send any available character
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LiteX – Minimal Verilator simulation

Use SimPlatform
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LiteX – Minimal Verilator simulation

Use your SoC as usual
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LiteX – Minimal Verilator simulation

Add a clocker module to 
generate the clock from the 
C++ test bench.

self.add_module("clocker",...
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LiteX – Minimal Verilator simulation

Run the simulation with 
given parameters
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step15 – Verilator simulation

What you will learn:
▶ Build a Verilator simulation of the Ring Controller
▶ Use litex_server and every tools on the simulated 
system
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